Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (11): 2320-2329    DOI: 10.3785/j.issn.1008-973X.2024.11.013
    
Penetration and deposition characteristics and machining performance of magnetic field assisted nanofluid spray lubrication
Tao LV1,2(),Aibing YU2,Xuefeng XU3,*(),Minhai MA1,Conglin ZHAO4
1. China Light Industry Plastic Mold Engineering Technology Research Center, Ningbo Polytechnic, Ningbo 315800, China
2. School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
3. Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China
4. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Download: HTML     PDF(2587KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A magnetic field assisted nanofluid spray lubrication technology was proposed in order to improve the high oil mist mass concentration environment formed by oil-based spray lubrication during machining. The innovation method can significantly reduce the oil mist mass concentration in the working environment. A magnetic field assisted spray device was constructed, and a water-based Fe3O4 nanofluid was prepared as cutting fluid. The penetration and deposition characteristics of nanofluid droplets under different magnetic induction intensities were analyzed. The oil mist mass concentration and machining performance of magnetized nanofluid mist during milling with 430 stainless steel were comparatively analyzed. Results show that the penetrability of nanofluid droplet was improved and the deposition amount was increased under the influence of magnetic field. The oil mist mass concentration, tool wear, cutting force, and roughness of nanofluid spray lubrication with 60 mT magnetic induction intensity were 66.3%, 22.7%, 14.6%, and 23.4% lower than those of vegetable oil spray lubrication, respectively. The nanofluid mist is easy to deposit under the influence of magnetic field and penetrate into the capillary micro crevice in the tool-chip contact interface to play a lubricating and cooling role and inhibit the dispersion of the oil mist.



Key wordsmagnetic field assistance      spray lubrication      penetration      oil mist mass concentration      tool wear      cutting force      roughness     
Received: 30 October 2023      Published: 23 October 2024
CLC:  TG 506  
Fund:  国家自然科学基金资助项目(52275468);国家重点研发计划资助项目(2020YFB2010600);宁波职业技术学院2022年度国家级科研项目培育课题(NZ22GJ003).
Corresponding Authors: Xuefeng XU     E-mail: tomtaolv@163.com;xuxuefeng@zjut.edu.cn
Cite this article:

Tao LV,Aibing YU,Xuefeng XU,Minhai MA,Conglin ZHAO. Penetration and deposition characteristics and machining performance of magnetic field assisted nanofluid spray lubrication. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2320-2329.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.11.013     OR     https://www.zjujournals.com/eng/Y2024/V58/I11/2320


磁场辅助纳米流体气雾渗透沉积特性及其加工性能

为了改善机加工过程中油基气雾润滑形成的高油雾质量浓度环境,提出磁场辅助纳米流体气雾润滑技术. 该技术可以大幅降低作业环境的油雾质量浓度. 搭建磁场辅助气雾装置,配制水基Fe3O4纳米流体切削液. 研究磁场影响下纳米流体气雾的渗透和沉积特性. 对比考察磁化气雾在铣削430不锈钢过程中的油雾质量浓度和加工性能. 结果表明,磁场影响下的纳米流体气雾渗透能力提升,沉积量增多. 当磁感应强度为60 mT时,纳米流体气雾润滑下的油雾质量浓度、刀具磨损量、切削力和粗糙度分别比植物油气雾润滑低66.3%、22.7%、14.6%和23.4%. 磁场影响下的纳米流体易沉积且渗透进刀-屑接触界面的毛细微缝中发挥润滑冷却作用,抑制油雾的弥散.


关键词: 磁场辅助,  气雾润滑,  渗透,  油雾质量浓度,  刀具磨损,  切削力,  粗糙度 
Fig.1 Theoretical structure of mMQL system applied in milling
Fig.2 Modified nozzle
Fig.3 Droplet sampling device
Fig.4 Schematic diagram of deposition experimental platform
Fig.5 Oil mist concentration detection device
项目条件
机床VDF-850数控加工中心
工件材料AISI 430 不锈钢
尺寸为210 mm×160 mm×220 mm
刀柄端铣刀柄, 直径为35 mm, 三齿
型号为TAP400R C32-35-200L
刀具硬质合金涂层刀具
型号为APMT160408PDER-H08
切削参数主轴转速: 1 000 r/min;
进给率: 0.10 mm/tooth;
轴向切深: 1 mm;
径向切深: 5 mm;
单次切削长度: 210 mm
冷却方式MQL和mMQL
切削液LB-2000植物油
水基Fe3O4纳米流体
MQL/mMQL 喷雾参数磁感应强度: 0、20、40、60、80、100 mT;
体积流量: 20 mL/h;
气压: 0.4 MPa;
喷嘴距离: 20 mm
Tab.1 Experimental condition for milling processing
Fig.6 Contact angle of nanofluid droplet under different magnetic induction intensity
Fig.7 Surface tension of nanofluid under different magnetic induction intensity
Fig.8 Dynamic viscosity of nanofluid under different magnetic induction intensity
Fig.9 Capillary penetration model
Fig.10 Penetration depth of nanofluid under different magnetic induction intensity
Fig.11 Capillary driving pressure of nanofluid under different magnetic induction intensity
Fig.12 Droplet distribution of nanofluid mist under different magnetic induction intensity
Fig.13 Nanofluid droplet size under different magnetic induction intensity
Fig.14 Nanofluid deposition quantity under different magnetic induction intensity
Fig.15 Oil mist concentration under different lubrication condition
Fig.16 Variation of tool flank wear under different lubrication condition
Fig.17 Optical micrograph of tool flank wear under different lubrication condition
Fig.18 Variation of cutting force under different lubrication condition
Fig.19 Variation of surface roughness under different lubrication condition
[23]   XU Wenhao, LI Changhe, ZHANG Yanbin, et al Research progress and application of electrostatic atomization minimum quantity lubrication[J]. Journal of Mechanical Engineering, 2023, 59 (7): 110- 138
doi: 10.3901/JME.2023.07.110
[24]   高世桥, 刘海鹏. 毛细力学[M]. 北京: 科学出版社, 2010: 60-90.
[25]   LEE B B, RAVINDRA P, CHAN E S New drop weight analysis for surface tension determination of liquids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332 (2/3): 112- 120
[26]   PARK K H, OLORTEGUI Y J, YOON M C, et al A study on droplets and their distribution for minimum quantity lubrication (MQL)[J]. International Journal of Machine Tools and Manufacture, 2010, 50 (9): 824- 833
doi: 10.1016/j.ijmachtools.2010.05.001
[27]   贾东洲, 李长河, 张彦彬, 等 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报, 2022, 58 (5): 198- 211
JIA Dongzhou, LI Changhe, ZHANG Yanbin, et al Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant[J]. Journal of Mechanical Engineering, 2022, 58 (5): 198- 211
doi: 10.3901/JME.2022.05.198
[28]   GODLEVSKI V A, VOLKOV A V, LATYSHEV V N, et al The kinetics of lubricant penetration action during machining[J]. Lubrication Science, 2010, 9 (2): 127- 140
[29]   II M, EDA H, IMAI T, et al Development of high water-content cutting fluids with a new concept: fire prevention and environmental protection[J]. Precision Engineering, 2000, 24 (3): 231- 236
doi: 10.1016/S0141-6359(00)00036-2
[1]   李林峰, 徐锦泱, 郭国强, 等 基于干切削与MQL的稀土镁合金铣削性能对比研究[J]. 工具技术, 2023, 57 (5): 12- 17
LI Linfeng, XU Jinyang, GUO Guoqiang, et al Comparative study on milling performances of rare-earth magnesium alloys under dry and MQL conditions[J]. Tool Engineering, 2023, 57 (5): 12- 17
doi: 10.3969/j.issn.1000-7008.2023.05.002
[2]   MAKHESANA M A, PATEL K M, KROLCZYK G M, et al Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 41: 225- 238
doi: 10.1016/j.cirpj.2022.12.015
[3]   高腾, 李长河, 张彦彬, 等 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J]. 机械工程学报, 2023, 59 (13): 325- 342
GAO Teng, LI Changhe, ZHANG Yanbin, et al Mechanical behavior of material removal and predictive force model for CFRP grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering, 2023, 59 (13): 325- 342
doi: 10.3901/JME.2023.13.325
[4]   梁正一, 杨赫然, 刘寅, 等 基于MQL的锆基块体金属玻璃钻削仿真研究[J]. 工具技术, 2023, 57 (7): 90- 96
LIANG Zhengyi, YANG Heran, LIU Yin, et al Simulation research on drilling of zr-based bulk metal glass based on MQL[J]. Tool Engineering, 2023, 57 (7): 90- 96
doi: 10.3969/j.issn.1000-7008.2023.07.016
[5]   HE T, LIU N C, XIA H Z, et al Progress and trend of minimum quantity lubrication (MQL): a comprehensive review[J]. Journal of Cleaner Production, 2023, 386: 135809
doi: 10.1016/j.jclepro.2022.135809
[6]   KHANAFER K, ELTAGGAZ A, DEIAB I, et al Toward sustainable micro-drilling of Inconel 718 superalloy using MQL-nanofluid[J]. International Journal of Advanced Manufacturing Technology, 2020, 107 (7/8): 3459- 3469
[7]   GAO T, LI C H, JIA D Z, et al Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication[J]. Journal of Cleaner Production, 2020, 277: 123328
doi: 10.1016/j.jclepro.2020.123328
[8]   MARUDA R W, SZCZOTKARZ N, MICHALSKI M, et al Evaluation of tool wear during turning of Ti6Al4V alloy applying MQL technique with Cu nanoparticles diversified in terms of size[J]. Wear, 2023, 532-533: 205111
doi: 10.1016/j.wear.2023.205111
[9]   YANG M, LI C H, ZHANG Y B, et al Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics[J]. International Journal of Advanced Manufacturing Technology, 2019, 102 (5-8): 2617- 2632
doi: 10.1007/s00170-019-03367-0
[10]   ZHAO J F, LIU Z Q, WANG B, et al. A comprehensive review of generating, monitoring, evaluating, and controlling particle emissions during machining process [J] Journal of Manufacturing Systems , 2023, 70: 395-416.
[11]   LAWAL S A, CHOUDHURY I A, NUKMAN Y A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant[J]. Journal of Cleaner Production, 2013, 41: 210- 221
doi: 10.1016/j.jclepro.2012.10.016
[12]   王长勇, 王林超, 高衍新, 等 金属加工液接触者班前班后肺功能变化研究[J]. 职业卫生与应急救援, 2022, 40 (3): 273- 276
WANG Changyong, WANG Linchao, GAO Yanxin, et al Pulmonary function changing of workers exposed to metalworking fluids pre- and post-shift[J]. Occupational Health and Emergency Rescue, 2022, 40 (3): 273- 276
[13]   邹立海, 康殿民 金属加工液致癌性研究进展[J]. 中国公共卫生, 2022, 38 (5): 634- 636
ZOU Lihai, KANG Dianmin Research progress in carcinogenicity of metalworking fluids[J]. China Journal of Public Health, 2022, 38 (5): 634- 636
doi: 10.11847/zgggws1135442
[14]   国家环境保护局. 环境空气质量标准: GB3095-2012 [S]. 北京: 中国标准出版社, 2012.
[15]   赵威, 何宁, 李亮, 等 微量润滑系统参数对切削环境空气质量的影响[J]. 机械工程学报, 2014, 50 (13): 184- 189
ZHAO Wei, HE Ning, LI Liang, et al Investigation on the influence of system parameters on ambient air quality in minimum quantity lubrication milling process[J]. Journal of Mechanical Engineering, 2014, 50 (13): 184- 189
doi: 10.3901/JME.2014.13.184
[16]   SMOLINSKI J M, GULARI E, MANKE C W Atomization of dilute polymer additives as mist suppressants in metal cutting fluids[J]. AIChE Journal, 1996, 42 (5): 1201- 1202
doi: 10.1002/aic.690420502
[17]   XU X F, LV T, LUAN Z Q, et al Capillary penetration mechanism and oil mist concentration of Al2O3 nanoparticle fluids in electrostatic minimum quantity lubrication (EMQL) milling[J]. International Journal of Advanced Manufacturing Technology, 2019, 104 (5-8): 1937- 1951
doi: 10.1007/s00170-019-04023-3
[18]   XU M C, DAI Q W, HUANG W, et al Using magnetic fluids to improve the behavior of ball bearings under starved lubrication[J]. Tribology International, 2020, 141: 105950
doi: 10.1016/j.triboint.2019.105950
[19]   任政, 周剑锋, 孟咸年, 等 磁流体动压润滑机械密封的自适应控制方法研究[J]. 润滑与密封, 2019, 44 (2): 45- 50
REN Zheng, ZHOU Jianfeng, MENG Xiannian, et al Study on adaptive control method of mechanical seal hydrodynamically lubricated by magnetic fluid[J]. Lubrication Engineering, 2019, 44 (2): 45- 50
doi: 10.3969/j.issn.0254-0150.2019.02.008
[20]   崔歆, 李长河, 张彦彬, 等 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60 (9): 323- 337
CUI Xin, LI Changhe, ZHANG Yanbin, et al Force model and verification of magnetic traction nanolubricant grinding[J]. Journal of Mechanical Engineering, 2024, 60 (9): 323- 337
[21]   阳静璇. 羟基化合物修饰四氧化三铁纳米颗粒的研究[D]. 成都: 电子科技大学, 2017.
YANG Jingxuan. A research of Fe3O4 nanoparticles modified by hydroxyl functional compounds [D]. Chengdu: University of Electronic Science and Technology, 2017.
[22]   张隆基, 张卫民, 孙中溪 十二烷基苯磺酸钠在纳米Fe3O4表面的吸附行为[J]. 济南大学学报: 自然科学版, 2010, 24 (1): 40- 43
ZHANG Longji, ZHANG Weimin, SUN Zhongxi Adsorption behavior of sodium dodecyl benzene sulfonate on the surfaces of Fe3O4 nanoparticles[J]. Journal of University of Jinan: Science and Technology, 2010, 24 (1): 40- 43
[1] Chao LIU,Zunpeng HUANG,Shaofu HUANG. Surface roughness modeling of thread workpieces in whirlwind milling considering material deformation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 761-771.
[2] Chao WANG,Chunzhou ZHU,Jinfeng ZOU,Bo LIU,Hanqiu ZHANG,Jiangfeng MA. Calculation approach for deformation of adjacent pile foundation caused by diagonal intersection with side penetration construction of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 557-569.
[3] Xialu WEN,He HUANG,Huifeng WANG,Lan YANG,Tao GAO. Optimization of 3D multi-UAVs low altitude penetration based on bald eagle search algorithm[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2020-2030.
[4] Dao-sheng LING,Wen-jun SHENG,Bo HUANG,Yun ZHAO. Influence of pavement unidirectional constraint on aircraft vibration response[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1684-1693.
[5] Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.
[6] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.
[7] Chao-feng ZENG,Huan LIAO,Miao-kun LI,Xiu-li XUE,Guo-xiong MEI. Effect of buttress wall length on retaining wall deflection induced by dewatering[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2252-2259.
[8] Xi CHEN,Ya-wu ZENG. Improved morphology characterization method and sampling effect of rough rock joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2161-2169.
[9] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[10] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[11] LUO Hua, CHEN Zu-yu, GONG Guo-fang, ZHAO Yu, JING Liu-jie, WANG Chao. Advance rate of TBM based on field boring data[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1566-1574.
[12] LI Zhuo-feng, LIN Wei-an, ZHU Yao-hong, BIAN Xue-cheng, YE Jun-neng, GAO Fei, CHEN Yun-min. Field test and analysis of controlling metro excavations deformation by foundation reinforcement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1475-1481.
[13] TAN Qing, ZHANG Yi-chao, XIA Yi-min, GAO Hao. Experimental research of TBM disc cutter penetrate saturated rock[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 914-921.
[14] LIU Li, YANG Yin tang. Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 392-396.
[15] CHENG Yi-hao, WANG Ming-yang, SHI Cun-cheng, LI Lang, SUN Ao. Review of experimental investigation of concrete target to resist missile impact in large velocity range[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 616-625.