Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 761-771    DOI: 10.3785/j.issn.1008-973X.2024.04.011
    
Surface roughness modeling of thread workpieces in whirlwind milling considering material deformation
Chao LIU1,2,3(),Zunpeng HUANG1,Shaofu HUANG1,2
1. School of Mechanical and Electrical Engineering, Anhui University of Science and Technology, Huainan 232001, China
2. Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China
3. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
Download: HTML     PDF(2359KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Surface roughness has an important influence on wear resistance, fatigue strength and contact stiffness of the workpiece. In the process of metal cutting, the surface roughness is greatly affected by the deformation of the workpiece material. An elastic recovery height model for workpiece material deformation was established based on the Hertz elastic contact theory, and a plastic deformation height model for workpiece material deformation was proposed based on the calculation principle of friction and wear. A residual height model of the workpiece surface was established by analyzing the contact motion between the tool and the workpiece. A theoretical model for surface roughness of ball screw whirlwind milling was established based on the influence of workpiece material deformation and residual height. The surface roughness model was validated through whirlwind milling experiments, and results showed that the theoretical model values were in good agreement with the experimental values. The influence of cutting parameters (cutting speed, maximum cutting depth, and number of tools) on surface roughness was analyzed. The relationship between deformation of workpiece materials and surface roughness was revealed.



Key wordssurface roughness      material deformation      whirlwind milling      ball screw      plastic deformation      elastic recovery     
Received: 14 April 2023      Published: 27 March 2024
CLC:  TG 501  
Fund:  国家自然科学基金资助项目(52205321,52275228);安徽省科技重大专项资助项目(202203f07020008);安徽理工大学环境友好材料与职业健康研究院(芜湖)资助项目(ALW2021YF06).
Cite this article:

Chao LIU,Zunpeng HUANG,Shaofu HUANG. Surface roughness modeling of thread workpieces in whirlwind milling considering material deformation. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 761-771.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.011     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/761


考虑材料形变的旋风铣削螺纹工件表面粗糙度建模

表面粗糙度对工件的耐磨性、疲劳强度和接触刚度有重要影响,在金属切削过程中,表面粗糙度受到工件材料形变的影响. 根据赫兹弹性接触理论,建立工件材料形变的弹性回复高度模型. 基于摩擦磨损计算原理,提出工件材料形变的塑性变形高度模型. 分析刀具-工件接触运动,建立工件表面的残留高度模型. 结合工件材料形变和残留高度的影响,建立滚珠丝杠旋风铣削表面粗糙度理论模型. 通过旋风铣削试验验证表面粗糙度模型,结果表明理论模型值与试验值吻合良好. 分析切削参数(切削速度、最大切削深度和刀具个数)对表面粗糙度的影响,揭示工件材料形变与表面粗糙度的关系.


关键词: 表面粗糙度,  材料形变,  旋风铣削,  滚珠丝杠,  塑性变形,  弹性回复 
Fig.1 Deformation area of workpiece material[32]
Fig.2 Deformation of workpiece material[33]
Fig.3 Whirlwind milling process
Fig.4 Contact motion between tool and workpiece
Fig.5 Formation mechanism of residual height
Fig.6 Maximum height of profile
工况v/(m·min?1)Dc/mmNt工况v/(m·min?1)Dc/mmNt
1600.06361400.083
21000.06371400.103
31400.06381400.062
41800.06391400.064
51400.043101400.066
Tab.1 Cutting parameters
参数数值参数数值
几何参数:热膨胀系数/(℃?1)11.9×10?6
轴向节距/mm10.00比热容/(J·kg?1·℃?1)476.975
工件外径/mm62.05Johnson-Cook参数[47]
齿根圆直径/mm57.95A/MPa2482.4
螺旋角/(°)2.5B/MPa1498.5
热物理参数[46]C0.027
密度/(g·mm?3)7.81×10?3n0.66
弹性模量/GPa210m0.19
泊松比0.3Tm/℃1 487
导热系数/(W·mm?1·℃?1)4.66×10?2
Tab.2 Geometrical and physical properties of workpiece
参数数值参数数值
热物理参数[48]比热容/( J·kg?1·℃?1)750
密度/( g·mm?3)4.28×10?3几何参数:
弹性模量/GPa587前角/(°)0
泊松比0.13后角/(°)9
导热系数/( W·mm?1·℃?1)4.4×10?2刀尖圆弧半径/mm3.3
热膨胀系数/(℃?1)4.7×10?6刀具倒圆半径/mm0.08
Tab.3 Geometrical and physical properties of tool
Fig.7 Experimental verification of surface roughness
μm
工况Ra1Ra2Ra3
10.700 00.708 10.698 2
20.668 70.689 40.664 6
30.598 10.616 00.584 5
40.635 40.605 80.607 6
50.588 40.563 80.569 8
60.684 60.645 70.624 8
70.759 80.731 60.722 6
80.593 40.609 80.579 2
90.598 40.612 70.582 6
100.598 10.607 00.578 5
Tab.4 Surface roughness of workpieces in whirlwind milling experiment
Fig.8 Experimental and theoretical values of surface roughness
Fig.9 Influence of cutting speed on surface roughness
Fig.10 Influence of maximum cutting depth on surface roughness
Fig.11 Influence of number of tools on surface roughness
Fig.12 Variation of plastic deformation height and surface roughness with cutting force
Fig.13 Influence of plastic deformation height on surface roughness
Fig.14 Variation of elastic recovery height and surface roughness with cutting force
Fig.15 Influence of elastic recovery height on surface roughness
[1]   倪寿勇, 李迎, 邓顺贤 精密外螺纹内旋铣的机理研究与刀具廓形设计[J]. 机械工程学报, 2012, 48 (7): 193- 198
NI Shouyong, LI Ying, DENG Shunxian Study on machining mechanism of internal whirling process for precise external thread and its tool profile design[J]. Journal of Mechanical Engineering, 2012, 48 (7): 193- 198
doi: 10.3901/JME.2012.07.193
[2]   倪寿勇, 李迎 旋风铣削加工刀齿切削力在线测量与预报[J]. 机械工程学报, 2015, 51 (11): 207- 212
NI Shouyong, LI Ying The measurement and prediction of cutting force for individual tooth in whirling process[J]. Journal of Mechanical Engineering, 2015, 51 (11): 207- 212
doi: 10.3901/JME.2015.11.207
[3]   雷勇, 赵威, 何宁, 等 TC17 钛合金低温铣削表面粗糙度预测[J]. 中国机械工程, 2022, 33 (5): 583- 588
LEI Yong, ZHAO Wei, HE Ning, et al Prediction of surface roughness for cryogenic milling TC17 titanium alloys[J]. China Mechanical Engineering, 2022, 33 (5): 583- 588
[4]   马廉洁, 李红双 脆性材料机械加工表面粗糙度模型的研究进展[J]. 中国机械工程, 2022, 33 (7): 757- 768
MA Lianjie, LI Hongshuang Research progresses on surface roughness model of brittle material machining[J]. China Mechanical Engineering, 2022, 33 (7): 757- 768
doi: 10.3969/j.issn.1004-132X.2022.07.001
[5]   谭芳芳, 朱俊江, 严天宏, 等 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报: 工学版, 2020, 54 (1): 40- 47
TAN Fangfang, ZHU Junjiang, YAN Tianhong, et al Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (1): 40- 47
[6]   HE C L, ZONG W J, ZHANG J J Influencing factors and theoretical modeling methods of surface roughness in turning process: state-of-the-art[J]. International Journal of Machine Tools and Manufacture, 2018, 129: 15- 26
[7]   范思敏, 肖继明, 董永亨, 等 球头铣刀铣削球面的表面形貌建模与仿真研究[J]. 中国机械工程, 2020, 31 (24): 2924- 2930
FAN Simin, XIAO Jiming, DONG Yongheng, et al Study on modeling and simulation of surface topography of spherical milling with ball-end milling cutters[J]. China Mechanical Engineering, 2020, 31 (24): 2924- 2930
[8]   陈景强, 马廉洁, 孟博, 等 氟金云母表面形成机理及表面粗糙度理论模型[J]. 中国机械工程, 2020, 31 (24): 2918- 2923
CHEN Jingqiang, MA Lianjie, MENG Bo, et al Surface formation mechanism and surface roughness theoretical model of fluorophlogopite[J]. China Mechanical Engineering, 2020, 31 (24): 2918- 2923
[9]   HAO Y, LIU Y Analysis of milling surface roughness prediction for thin-walled parts with curved surface[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93: 2289- 2297
doi: 10.1007/s00170-017-0615-4
[10]   ZHAO Z, WANG S, WANG Z, et al Interference-and chatter-free cutter posture optimization towards minimal surface roughness in five-axis machining[J]. International Journal of Mechanical Sciences, 2020, 171: 105395
doi: 10.1016/j.ijmecsci.2019.105395
[11]   ZHENG F, ZHANG M, ZHANG W, et al The fundamental roughness model for face-milling spiral bevel gears considering run-outs[J]. International Journal of Mechanical Sciences, 2019, 156: 272- 282
doi: 10.1016/j.ijmecsci.2019.03.017
[12]   SUN Z, TO S, ZHANG S, et al Theoretical and experimental investigation into non-uniformity of surface generation in micro-milling[J]. International Journal of Mechanical Sciences, 2018, 140: 313- 324
doi: 10.1016/j.ijmecsci.2018.03.019
[13]   WANG L, GE S, SI H, et al Roughness control method for five-axis flank milling based on the analysis of surface topography[J]. International Journal of Mechanical Sciences, 2020, 169: 105337
doi: 10.1016/j.ijmecsci.2019.105337
[14]   YUAN Y, JING X, EHMANN K F, et al Surface roughness modeling in micro end-milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 1655- 1664
doi: 10.1007/s00170-017-1278-x
[15]   JING X, SONG B, XU J, et al Mathematical modeling and experimental verification of surface roughness in micro-end-milling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 7627- 7637
doi: 10.1007/s00170-022-09244-7
[16]   ARIZMENDI M, JIMÉNEZ A Modelling and analysis of surface topography generated in face milling operations[J]. International Journal of Mechanical Sciences, 2019, 163: 105061
doi: 10.1016/j.ijmecsci.2019.105061
[17]   CAI C, AN Q, MING W, et al Modelling of machined surface topography and anisotropic texture direction considering stochastic tool grinding error and wear in peripheral milling[J]. Journal of Materials Processing Technology, 2021, 292: 117065
doi: 10.1016/j.jmatprotec.2021.117065
[18]   LAZKANO X, ARISTIMUÑO P X, AIZPURU O, et al Roughness maps to determine the optimum process window parameters in face milling[J]. International Journal of Mechanical Sciences, 2022, 221: 107191
doi: 10.1016/j.ijmecsci.2022.107191
[19]   GUO Q, YE L, WANG Y, et al Comparative assessment of surface roughness and microstructure produced in whirlwind milling of bearing steel[J]. Machining Science and Technology, 2014, 18 (2): 251- 276
doi: 10.1080/10910344.2014.897843
[20]   曹勇, 王禹林, 冯虎田 大型螺纹硬态旋风铣削的表面粗糙度试验研究[J]. 组合机床与自动化加工技术, 2015, (1): 26- 29
CAO Yong, WANG Yulin, FENG Hutian Experimental research on surface roughness of large-scale thread in hard whirling[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2015, (1): 26- 29
[21]   周斌, 曹勇, 王禹林, 等 基于 BP 神经网络的大型螺纹旋风铣削表面粗糙度预测[J]. 组合机床与自动化加工技术, 2015, (7): 5- 7
ZHOU Bin, CAO Yong, WANG Yulin, et al Prediction of surface roughness of large-scale thread hard whirling based on BP neural network[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2015, (7): 5- 7
[22]   GUO Q, WANG M, XU Y, et al Minimization of surface roughness and tangential cutting force in whirlwind milling of a large screw[J]. Measurement, 2020, 152: 107256
doi: 10.1016/j.measurement.2019.107256
[23]   何彦, 余平甲, 王乐祥, 等 丝杠硬态旋铣工艺的多目标参数优化[J]. 计算机集成制造系统, 2018, 24 (4): 894- 904
HE Yan, YU Pingjia, WANG Lexiang, et al Multi-objective optimization of machining parameters for hard whirlwind milling of screw[J]. Computer Integrated Manufacturing Systems, 2018, 24 (4): 894- 904
[24]   WU P, DAI H, LI Y, et al A physics-informed machine learning model for surface roughness prediction in milling operations[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123: 4065- 4076
doi: 10.1007/s00170-022-10470-2
[25]   WANG L, HE Y, WANG Y, et al Analytical modeling of material removal mechanism in dry whirling milling process considering geometry, kinematics and mechanics[J]. International Journal of Mechanical Sciences, 2020, 172: 105419
doi: 10.1016/j.ijmecsci.2020.105419
[26]   GUO Q, GUO T, WANG Y The cutting vibration and surface information in whirlwind milling a large screw[J]. Advances in Mechanical Engineering, 2022, 14 (8): 1- 11
[27]   王素玉, 于涛, 王文超 基于弹塑性理论的高速铣削表面粗糙度力学建模[J]. 工具技术, 2011, 45 (5): 25- 27
WANG Suyu, YU Tao, WANG Wenchao Mechanical modeling of surface roughness in HSM based on thermo-elastic-plastic theory[J]. Tool Engineering, 2011, 45 (5): 25- 27
[28]   王文超, 王素玉, 于涛, 等 基于热-弹塑性理论的高速切削45钢有限元分析[J]. 煤矿机械, 2012, 33 (3): 124- 125
WANG Wenchao, WANG Suyu, YU Tao, et al Finite element analysis of 45 steel in HSM based on thermo-elastic-plastic theory[J]. Coal Mine Machinery, 2012, 33 (3): 124- 125
[29]   李彦生, 薛斌, 陈东菊, 等 基于材料特性的飞刀铣削加工表面粗糙度模型的研究[J]. 制造业自动化, 2019, 41 (1): 65- 67
LI Yansheng, XUE Bin, CHEN Dongju, et al Research on surface roughness model of milling based on material characteristics[J]. Manufacturing Automation, 2019, 41 (1): 65- 67
[30]   章磊. 冷塑性变形过程中的表面粗糙度演变及控制研究[D]. 重庆: 重庆大学, 2018.
ZHANG Lei. Research on the surface roughness evolution and surface finish controlling in cold plastic deformation [D]. Chongqing: Chongqing University, 2018.
[31]   黄宁. 考虑弹塑性变形特征的单晶硅超精密磨削表面质量预测[D]. 大连: 大连理工大学, 2021.
HUANG Ning. Surface quality prediction of ultra-precision ground single-crystal silicon considering elasto-plastic deformation characteristics [D]. Dalian: Dalian University of Technology, 2021.
[32]   WANG B, LIU Z, SU G, et al Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining[J]. International Journal of Mechanical Sciences, 2015, 104: 44- 59
doi: 10.1016/j.ijmecsci.2015.10.004
[33]   GAO G F, FU Z X, ZHAO J Z, et al Study on surface roughness of milling based on the elastic-plastic deformation[J]. Applied Mechanics and Materials, 2014, 551: 55- 60
doi: 10.4028/www.scientific.net/AMM.551.55
[34]   KRAGELSKY I V, DOBYCHIN M N, KOMBALOV V S. Friction and wear: calculation methods [M]. Oxford: Pergamon Press, 1982.
[35]   WANG S, WANG W, YU T, et al Prediction of the surface roughness in high-speed machining based on molecular-mechanical theory of friction[J]. Advanced Materials Research, 2011, 308-310: 1134- 1138
doi: 10.4028/www.scientific.net/AMR.308-310.1134
[36]   LALWANI D I, MEHTA N K, JAIN P K Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model[J]. Journal of Materials Processing Technology, 2009, 209 (12/13): 5305- 5312
[37]   COHEN G, GILLES P, SEGONDS S, et al Thermal and mechanical modeling during dry turning operations[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58: 133- 140
doi: 10.1007/s00170-011-3372-9
[38]   TOUNSI N, VINCENTI J, OTHO A, et al From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation[J]. International Journal of Machine Tools and Manufacture, 2002, 42 (12): 1373- 1383
doi: 10.1016/S0890-6955(02)00046-9
[39]   SRINIVASA Y V, SHUNMUGAM M S Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison[J]. International Journal of Machine Tools and Manufacture, 2013, 67: 18- 27
doi: 10.1016/j.ijmachtools.2012.12.004
[40]   JOHNSON K L. Contact mechanics [M]. Cambridge: Cambridge University Press, 1987.
[41]   LIU C, HE Y, LI Y, et al Modeling of residual stresses by correlating surface topography in machining of AISI 52100 steel[J]. Journal of Manufacturing Science and Engineering, 2022, 144 (5): 051008
doi: 10.1115/1.4052706
[42]   ALTINTAS Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design [M]. 2nd ed. Cambridge: Cambridge University Press, 2012.
[43]   LIU C, HE Y, WANG Y, et al An investigation of surface topography and workpiece temperature in whirling milling machining[J]. International Journal of Mechanical Sciences, 2019, 164: 105182
doi: 10.1016/j.ijmecsci.2019.105182
[44]   国家标准化管理委员会. 产品几何技术规范(GPS)表面结构 轮廓法 术语、定义及表面结构参数: GB/T 3505—2009 [S]. 北京: 中国标准出版社, 2009: 3.
[45]   WANG B, ZHANG Q, WANG M, et al A predictive model of milling surface roughness[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108: 2755- 2762
doi: 10.1007/s00170-020-05599-x
[46]   PAWAR S, SALVE A, CHINCHANIKAR S, et al Residual stresses during hard turning of AISI 52100 steel: numerical modelling with experimental validation[J]. Materials Today: Proceedings, 2017, 4 (2): 2350- 2359
doi: 10.1016/j.matpr.2017.02.084
[47]   GUO Y B, WEN Q, WOODBURY K A Dynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulations[J]. Journal of Manufacturing Science and Engineering, 2006, 128 (3): 749- 759
doi: 10.1115/1.2193549
[1] Wen-tao LIU,Kun ZHAO,Jiu-gen WANG,Li SONG. Vibration measurement of ball screws used in automobile braking systems[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1529-1537.
[2] Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1497-1504.
[3] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[4] Jian CHEN,Jin-hua ZHANG,Lin-bo ZHU,Jun HONG. Analysis and improvement on elastic-plastic micro-contact modelof rough surface[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1674-1680.
[5] DONG Hui yue, ZHU Ling sheng, ZHANG Ming, LI Shao bo, LUO Shui jun. Orbital milling method of aircraft skins trimming[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2033-2039.
[6] HU An-feng,SUN Bo,XIE Kang-he,JIA Yu-shuai. An analysis of cumulative settlement of soft soil under traffic loading[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1939-1944.