Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2040-2052    DOI: 10.3785/j.issn.1008-973X.2024.10.007
    
Rumor detection method based on breadth-depth sampling and graph convolutional networks
Youwei WANG1(),Weiqi WANG1,Lizhou FENG2,Jianming ZHU1,Yang LI1
1. School of Information, Central University of Finance and Economics, Beijing 100081, China
2. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China
Download: HTML     PDF(1652KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new detection method was proposed to resolve the problems of early data loss and insufficient feature utilization in the field of rumor detection. In order to fully extract early propagation features of events, a breadth sampling method was proposed, and propagation sequences corresponding to events were constructed. A Transformer was utilized to explore semantic correlations between long-distance comments and to construct propagation sequence features for events. In order to effectively uncover the structural features of event propagation, a depth sampling method based on path length was proposed, and information propagation subgraphs and information aggregation subgraphs corresponding to events were constructed. The advantage of graph convolutional networks in exploring graph structural features was leveraged to obtain the propagation structure features corresponding to events. Feature representation of the propagation sequence and propagation structure for events were concatenated to obtain the ultimate feature representation. Validation experiments for the proposed method were conducted on two public datasets (Weibo2016 and CED). Results show that the proposed method is generally superior to existing typical methods. Compared to baseline methods, the proposed method has significant improvements in accuracy and F1 score, validating the effectiveness of the method in the field of rumor detection.



Key wordsrumor detection      graph convolutional network      breadth sampling      depth sampling      attention mechanism     
Received: 04 August 2023      Published: 27 September 2024
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(61906220);国家社科基金资助项目(18CTJ008);教育部人文社科资助项目(19YJCZH178);中央财经大学新兴交叉学科建设项目;内蒙古纪检监察大数据实验室2020-2021年度开放课题资助项目(IMDBD202002, IMDBD202004).
Cite this article:

Youwei WANG,Weiqi WANG,Lizhou FENG,Jianming ZHU,Yang LI. Rumor detection method based on breadth-depth sampling and graph convolutional networks. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2040-2052.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.007     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2040


基于广度-深度采样和图卷积网络的谣言检测方法

现有谣言检测方法存在早期数据丢失、特征利用不充分问题,为此提出新的检测方法. 为了充分挖掘事件的早期传播特征,提出广度采样方法并构建与事件对应的传播序列,利用Transformer挖掘长距离评论间的语义相关性并构建事件的传播序列特征. 为了有效挖掘事件的传播结构特征,提出基于路径长度的深度采样方法,构建事件对应的信息传播子图和信息聚合子图,利用图卷积网络在挖掘图结构特征方面的优势,获得与事件对应的传播结构特征. 将事件对应的传播序列特征表示与传播结构特征表示进行拼接,得到事件对应的最终特征表示. 在公开数据集Weibo2016和CED上开展所提方法的有效性验证实验. 结果表明,所提方法普遍优于现有典型方法. 与基线方法相比,所提方法的准确率和F1值均有显著提升,所提方法在谣言检测领域的有效性得到验证.


关键词: 谣言检测,  图卷积网络,  广度采样,  深度采样,  注意力机制 
Fig.1 Transformer encoding block structure diagram
Fig.2 Schematic diagram of weibo propagation
Fig.3 Executing flowchart of rumor detection method based on breadth-depth sampling and graph convolutional networks
Fig.4 Schematic diagram of breadth sampling strategy
Fig.5 Schematic diagram of depth sampling strategy
数据集帖子总数非谣言帖子数谣言帖子数用户数事件平均层数事件平均帖子数事件平均传播时长/h
Weibo20164 6642 3512 3132 746 8182.85431.271 811.4
CED3 38718491 5381 067 4101.73377.7411.34
Tab.1 Parameters of two public datasets
方法参数设置
DTR所选特征包括信息来源可信度、身份、多样性、地址,语言态度、传播特征等,使用信息增益选择特征
DTC所选特征包括消息内容、用户、主题、传播等,使用向前搜索选择特征
SVM-TS所选特征包括用户信息、内容、传播等,核函数为径向基函数(radial basis function,RBF)
GRU词汇表大小为5000,GRU层数为2,学习率为0.5
RvNN词汇表大小为5000,词嵌入向量维数为100
PLAN隐藏层向量维数为300,学习率为0.01,批处理大小为16
Bi-GCN隐藏层向量维数为64,丢弃率为0.5,边丢弃率为0.5,Epoch=200,早停次数为10
RDEA隐藏层向量维数为64,节点掩蔽率为0.2,边丢弃率为0.5
EBGCN隐藏层向量维数为64,学习率为0.0002,隐藏层向量维数为200
ACLR-BiGCN隐藏层向量维数为512,图卷积层数为2,学习率为0.0001,边丢弃率为0.2,批处理大小为64
UPSR隐藏层向量维数为64,学习率为0.001,Epoch=200
Tab.2 Parameter settings for each baseline model
WDN/%TAccF1
10.34547.910.9380.937
0.55250.320.9440.943
0.77256.300.9490.949
20.35853.930.9430.943
0.56558.760.9520.950
0.78476.300.9310.929
30.36664.270.9330.934
0.57789.440.9410.939
0.79499.230.9220.918
Tab.3 Parameter analysis results of Weibo2016 dataset
WDN/%TAccF1
10.3445.640.9220.923
0.5546.190.9280.928
0.7828.760.9320.929
20.3626.260.9230.918
0.5718.540.9300.932
0.7969.280.9140.916
Tab.4 Parameter analysis results of CED dataset
方法类别方法名称Weibo2016CEDTwitter-COVID19
AccF1AccF1AccF1
基于传统机器学习DTR0.7320.7330.6720.6680.3770.329
DTC0.8310.8250.7400.7410.4920.426
SVM-TS0.8570.8590.7460.7560.5100.498
基于事件传播序列GRU0.8980.8990.8610.8640.4980.401
RvNN0.9080.9080.8920.8910.5400.391
PLAN0.9320.9360.9160.9130.5730.432
基于事件传播结构Bi-GCN0.9270.9280.8940.8980.6160.415
RDEA0.9210.9210.9100.9160.6380.504
EBGCN0.9370.9350.8800.8790.5890.563
ACLR-BiGCN0.9240.9220.8980.9030.7650.686
UPSR0.9340.9280.8960.8950.6020.587
BDS-GCN0.9440.9430.9280.9280.6820.674
Tab.5 Experimental results of different rumor detection methods in three datasets
Fig.6 Modular ablation experimental results of rumor detection method in two datasets
Fig.7 Performance indicators comparision of different rumor detection methods in Weibo2016 dataset
Fig.8 Performance indicators comparision of different rumor detection methods in CED dataset
Fig.9 Early detection of rumour events by different methods in Weibo2016 dataset
Fig.10 Early detection of rumour events by different methods in CED dataset
[1]   MA J, GAO W, WONG K F. Detect rumors in microblog posts using propagation structure via kernel learning [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics . Vancouver: Association for Computational Linguistics, 2017: 708–717.
[2]   MA J, GAO W, WEI Z, et al. Detect rumors using time series of social context information on microblogging websites [C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management . Melbourne: ACM, 2015: 1751–1754.
[3]   YANG F, LIU Y, YU X, et al. Automatic detection of rumor on sina weibo [C]// Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics . Beijing: ACM, 2012: 1–7.
[4]   ZHAO Z, RESNICK P, MEI Q. Enquiring minds: early detection of rumors in social media from enquiry posts [C]// Proceedings of the 24th International Conference on World Wide Web . Florence: [s. n.], 2015: 1395–1405.
[5]   CASTILLO C, MENDOZA M, POBLETE B. Information credibility on Twitter [C]// Proceedings of the 20th International Conference on World Wide Web . Hyderabad: ACM, 2011: 675–684.
[6]   REIS J C S, CORREIA A, MURAI F, et al Supervised learning for fake news detection[J]. IEEE Intelligent Systems, 2019, 34 (2): 76- 81
doi: 10.1109/MIS.2019.2899143
[7]   YANG R, ZHANG J, GAO X, et al. Simple and effective text matching with richer alignment features [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics . Florence: Association for Computational Linguistics, 2019: 4699–4709.
[8]   KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media [C]// 2013 IEEE 13th International Conference on Data Mining . Dallas: IEEE, 2013: 1103–1108.
[9]   LIU X, NOURBAKHSH A, LI Q, et al. Real-time rumor debunking on Twitter [C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management . Melbourne: ACM, 2015: 1867–1870.
[10]   YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence . Melbourne: AAAI Press, 2017: 3901–3907.
[11]   MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence . New York: AAAI Press, 2016: 3818–3824.
[12]   WU K, YANG S, ZHU K Q. False rumors detection on Sina Weibo by propagation structures [C]// 2015 IEEE 31st International Conference on Data Engineering . Seoul: IEEE, 2015: 651–662.
[13]   VEDOVA M L D, TACCHINI E, MORET S, et al. Automatic online fake news detection combining content and social signals [C]// 2018 22nd Conference of Open Innovations Association (FRUCT) . Jyvaskyla: IEEE, 2018: 272–279.
[14]   MA J, GAO W, WONG K F. Rumor detection on Twitter with tree-structured recursive neural networks [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics . Melbourne: Association for Computational Linguistics, 2018: 1980–1989.
[15]   KUMAR S, CARLEY K. Tree LSTMs with convolution units to predict stance and rumor veracity in social media conversations [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics . Florence: Association for Computational Linguistics, 2019: 5047–5058.
[16]   LAO A, SHI C, YANG Y. Rumor detection with field of linear and non-linear propagation [C]// Proceedings of the Web Conference 2021 . Ljubljana: ACM, 2021: 3178–3187.
[17]   VOSOUGHI S, ROY D, ARAL S The spread of true and false news online[J]. Science, 2018, 359 (6380): 1146- 1151
doi: 10.1126/science.aap9559
[18]   BIAN T, XIAO X, XU T, et al. Rumor detection on social media with bi-directional graph convolutional networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S. l.]: AAAI Press, 2020, 34(1): 549–556.
[19]   HUANG Q, YU J, WU J, et al. Heterogeneous graph attention networks for early detection of rumors on Twitter [C]// 2020 International Joint Conference on Neural Networks . Glasgow: IEEE, 2020.
[20]   杨延杰, 王莉, 王宇航 融合源信息和门控图神经网络的谣言检测研究[J]. 计算机研究与发展, 2021, 58 (7): 1412- 1424
YANG Yanjie, WANG Li, WANG Yuhang Rumor detection based on source information and gating graph neural network[J]. Journal of Computer Research and Development, 2021, 58 (7): 1412- 1424
[21]   HE Z, LI C, ZHOU F, et al. Rumor detection on social media with event augmentations [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval . [S.l.]: ACM, 2021: 2020–2024.
[22]   LIN H, MA J, CHEN L, et al. Detect rumors in microblog posts for low-resource domains via adversarial contrastive learning [C]// Findings of the Association for Computational Linguistics: NAACL 2022 . Seattle: Association for Computational Linguistics, 2022: 2543–2556.
[23]   WEI L, HU D, ZHOU W, et al. Uncertainty-aware propagation structure reconstruction for fake news detection [C]// Proceedings of the 29th International Conference on Computational Linguistics . Gyeongju: International Committee on Computation Linguistics, 2022: 2759–2768.
[24]   KHOO L M S, CHIEU H L, QIAN Z, et al. Interpretable rumor detection in microblogs by attending to user interactions [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S. l.]: AAAI Press, 2020: 8783–8790.
[25]   KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017–02–22)[2023–07–19]. https://arxiv.org/pdf/1609.02907.
[26]   NIKOLENTZOS G, TIXIER A, VAZIRGIANNIS M. Message passing attention networks for document understanding [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S. l.]: AAAI Press, 2020: 8544–8551.
[27]   WEI L, HU D, ZHOU W, et al. Towards propagation uncertainty: edge-enhanced bayesian graph convolutional networks for rumor detection [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing . [S.l.]: Association for Computational Linguistics, 2021: 3845–3854.
[28]   LI S, ZHAO Z, HU R, et al. Analogical reasoning on Chinese morphological and semantic relations [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics . Melbourne: Association for Computational Linguistics, 2018: 138–143.
[29]   HUANG Q, ZHOU C, WU J, et al. Deep structure learning for rumor detection on Twitter [C]// 2019 International Joint Conference on Neural Networks . Budapest: IEEE, 2019: 1–8.
[30]   KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2017–01–30)[2023–03–29]. https://arxiv.org/pdf/1412.6980.
[1] Ke CHEN,Wenhao ZHANG. Zero-shot object rumor detection based on contrastive learning[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1790-1800.
[2] Canlin LI,Xinyue WANG,Lizhuang MA,Zhiwen SHAO,Wenjiao ZHANG. Image cartoonization incorporating attention mechanism and structural line extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1728-1737.
[3] Zhongliang LI,Qi CHEN,Lin SHI,Chao YANG,Xianming ZOU. Dynamic knowledge graph completion of temporal aware combination[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1738-1747.
[4] Shuhan WU,Dan WANG,Yuanfang CHEN,Ziyu JIA,Yueqi ZHANG,Meng XU. Attention-fused filter bank dual-view graph convolution motor imagery EEG classification[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1326-1335.
[5] Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.
[6] Jun YANG,Chen ZHANG. Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1121-1132.
[7] Yuntang LI,Hengjie LI,Kun ZHANG,Binrui WANG,Shanyue GUAN,Yuan CHEN. Recognition of complex power lines based on novel encoder-decoder network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1133-1141.
[8] Zhiwei XING,Shujie ZHU,Biao LI. Airline baggage feature perception based on improved graph convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 941-950.
[9] Yi LIU,Yidan CHEN,Lin GAO,Jiao HONG. Lightweight road extraction model based on multi-scale feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 951-959.
[10] Cuiting WEI,Weijian ZHAO,Bochao SUN,Yunyi LIU. Intelligent rebar inspection based on improved Mask R-CNN and stereo vision[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1009-1019.
[11] Hai HUAN,Yu SHENG,Chenxi GU. Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 696-707.
[12] Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
[13] Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.
[14] Diao ZHOU,Xin XIONG,Jianhua ZHOU,Jing ZONG,Qi ZHANG. Convolutional neural network combined with subdomain adaptation for low sampling rate EMG-based gesture recognition[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2011-2019.
[15] Siyi QIN,Shaoyan GAI,Feipeng DA. Video object detection algorithm based on multi-level feature aggregation under mixed sampler[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 10-19.