|
|
Experimental study on wind load characteristics of continuous roof with concave surface |
Shuren HAO1( ),Tian’e LI1,*( ),Hui PENG2,Haiquan WU2,Yueqin YAN2,Haiwang LI1,Ning SU3 |
1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2. Shanxi Fifth Construction Group Limited Company, Taiyuan 030013, China 3. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China |
|
|
Abstract Wind tunnel pressure measurement tests on rigid models of three types of concave surface roofs with different continuous roof numbers were conducted to study the wind load characteristics and provide wind resistance design references for practical engineering. The influences of continuous roof numbers and wind direction angle on the lift coefficient, mean wind pressure coefficient, and peak wind pressure coefficient were systematically analyzed. The results show that the overall lift coefficient decreases with the increase of continuous roof numbers, and the lift coefficient of each roof is greatly affected by the wind direction angle. Under the conditions of different continuous roof numbers and wind direction angles, the whole roof withstands upward wind suction and the mean wind pressure coefficient exhibits complex fluctuations. A significant airflow separation phenomenon appears at the edge of the windward roof, corresponding to high wind suction. The further away from the windward roof, the more stable the distribution of the mean wind pressure coefficient, which was stable at about ?0.1. The continuous roof numbers exhibit a significant influence on the peak pressure coefficient, especially on the negative peak wind pressure coefficient. The minimum value of the negative peak wind pressure coefficient was ?5.1 for the edge roof and ?3.3 for the middle roof. Based on the test results, the mean and peak wind pressure coefficients for different zoning continuous roofs with concave surfaces were given out.
|
Received: 29 June 2023
Published: 01 July 2024
|
|
Fund: 国家自然科学基金资助项目(52202415);山西省基础研究计划资助项目(202203021221044);山西五建集团有限公司科研项目(RH2100002871). |
Corresponding Authors:
Tian’e LI
E-mail: pangshijin2021@163.com;woshitiane@126.com
|
联排凹曲面屋盖的风荷载特性试验研究
为了探究凹曲面屋盖的风荷载特性并为实际工程提供抗风设计参考,对3种联排凹曲面屋盖进行刚性模型风洞测压试验,系统分析联排数及风向角对凹曲面屋盖升力系数、平均风压系数和极值风压系数的影响. 结果表明:屋盖整体升力系数随着联排数的增加不断降低,各屋盖的升力系数受风向角影响较大. 在不同联排数及风向角下,屋盖整体承受向上的风吸力,屋盖的平均风压系数表现出复杂的波动性;在迎风屋盖边缘处的气流分离现象明显,导致该处存在较大风吸力;越远离迎风侧的屋盖,平均风压系数的波动越小,稳定于?0.1. 联排数对极值风压系数的影响不可忽略,尤其是极小值负压系数,边缘屋盖分区极小值负压系数的最小值为?5.1,中间屋盖分区极小值负压系数的最小值为?3.3. 基于试验结果,总结给出不同联排凹曲面屋盖分区的平均风压系数和极值风压系数.
关键词:
凹曲面屋盖,
风洞试验,
风荷载,
干扰效应,
风压分区
|
|
[1] |
张洪才, 贾华勇, 牛晓宇 关于传统建筑屋面凹曲的探讨[J]. 古建园林技术, 2017, (4): 44- 47 ZHANG Hongcai, JIA Huayong, NIU Xiaoyu Discussion on the roof concave of the traditional architectures[J]. Traditional Chinese Architecture and Gardens, 2017, (4): 44- 47
|
|
|
[2] |
QIU Y, SUN Y, WU Y, et al Modeling the mean wind loads on cylindrical roofs with consideration of the Reynolds number effect in uniform flow with low turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 129: 11- 21
doi: 10.1016/j.jweia.2014.02.011
|
|
|
[3] |
LI Y Q, TAMURA Y, YOSHIDA A, et al Wind loading and its effects on single-layer reticulated cylindrical shells[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94 (12): 949- 973
doi: 10.1016/j.jweia.2006.04.004
|
|
|
[4] |
SU N, PENG S, HONG N, et al Wind tunnel investigation on the wind load of large-span coal sheds with porous gables: influence of gable ventilation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104242
doi: 10.1016/j.jweia.2020.104242
|
|
|
[5] |
吴迪, 武岳, 孙瑛 大跨度屋盖结构极值风压概率分布特征研究[J]. 建筑结构学报, 2015, 36 (3): 29- 35 WU Di, WU Yue, SUN Ying Probability distribution characteristics of extreme wind pressure for large span roofs[J]. Journal of Building Structures, 2015, 36 (3): 29- 35
|
|
|
[6] |
高亮, 崔欣, 白桦, 等 某大跨度波浪形屋面体型系数取值研究[J]. 西安理工大学学报, 2016, 32 (3): 328- 332 GAO Liang, CUI Xin, BAI Hua, et al Analogical researchon shape coefficient of the abnormal roofing structure with the standard[J]. Journal of Xi’an University of Technology, 2016, 32 (3): 328- 332
|
|
|
[7] |
桑冲 体育馆凹曲面屋盖风压特性及干扰效应的风洞试验研究[J]. 铁道勘测与设计, 2014, (1): 59- 66 SANG Chong Wind tunnel test research on wind load and interference effect on the concave surface roof of gymnasium[J]. Railway Survey and Design, 2014, (1): 59- 66
|
|
|
[8] |
聂少锋, 孙玉金, 毛路, 等 弧形内凹大跨屋盖结构风荷载特性的风洞试验与数值模拟[J]. 西安建筑科技大学学报: 自然科学版, 2016, 48 (5): 669- 675 NIE Shaofeng, SUN Yujin, MAO Lu, et al Wind tunnel test and numerical simulation on wind load characteristics of large-span roof with concave surface[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2016, 48 (5): 669- 675
|
|
|
[9] |
滕起, 张相勇, 孙建平, 等 弧形内凹连续坡屋面风压特性的数值模拟[J]. 空间结构, 2019, 25 (4): 43- 50 TENG Qi, ZHANG Xiangyong, SUN Jianping, et al Numerical simulation of wind pressure characteristics on a slope roof with consecutive concave surfaces[J]. Spatial Structures, 2019, 25 (4): 43- 50
|
|
|
[10] |
马文勇, 刘庆宽, 尉耀元 具有凹面外形的大跨屋盖结构风荷载分布及风洞试验研究[J]. 振动与冲击, 2012, 31 (22): 34- 38 MA Wenyong, LIU Qingkuan, WEI Yaoyuan Wind load distribution and wind tunnel test for a curved concave long-span roof[J]. Journal of Vibration and Shock, 2012, 31 (22): 34- 38
doi: 10.3969/j.issn.1000-3835.2012.22.007
|
|
|
[11] |
中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012: 30–53.
|
|
|
[12] |
American Society of Civil Engineers. Minimum design loads for buildings and other structures: ASCE/SEI 7-10 [S]. Reston: ASCE, 2010: 187–201.
|
|
|
[13] |
中华人民共和国住房和城乡建设部. 索结构技术规程: JGJ 257—2012 [S]. 北京: 中国建筑工业出版社, 2012: 46–47.
|
|
|
[14] |
王秀丽, 刘永周 矢跨比和垂跨比对张弦立体桁架性能的影响分析[J]. 空间结构, 2005, 35 (1): 35- 39 WANG Xiuli, LIU Yongzhou Influences of rise-to-span ratio and sag-to-span ratio on the prestressed spatial truss string structure[J]. Spatial Structures, 2005, 35 (1): 35- 39
doi: 10.3969/j.issn.1006-6578.2005.01.007
|
|
|
[15] |
LAROSE G L, D’AUTEUIL A Experiments on 2D rectangular prisms at high Reynolds numbers in a pressurised wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (6/7): 923- 933
|
|
|
[16] |
孙瑛, 武岳, 林志兴, 等 大跨度平屋盖表面的特征湍流研究[J]. 空气动力学学报, 2007, 25 (3): 319- 324 SUN Ying, WU Yue, LIN Zhixing, et al Characteristics of signature turbulence on long span flat roofs[J]. Acta Aerodynamica Sinica, 2007, 25 (3): 319- 324
doi: 10.3969/j.issn.0258-1825.2007.03.007
|
|
|
[17] |
中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T 338—2014 [S]. 北京: 中国建筑工业出版社, 2014: 5–9.
|
|
|
[18] |
KAY N J, OO N L, GILL M S, et al Robustness of the digital filter to differing calibration flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104061
doi: 10.1016/j.jweia.2019.104061
|
|
|
[19] |
陈波, 程行, 张丽娜, 等 不同排列方式平屋面建筑群极值风荷载干扰效应影响研究[J]. 建筑结构学报, 2018, 39 (10): 1- 10 CHEN Bo, CHENG Hang, ZHANG Lina, et al Investigation on interference effects on peak wind loads on a group of buildings with flat roof under different arrangements[J]. Journal of Building Structures, 2018, 39 (10): 1- 10
|
|
|
[20] |
冯帅, 谢壮宁 基于动力学模态分解的大跨度平屋盖风压场研究[J]. 工程力学, 2022, 39 (7): 109- 119 FENG Shuai, XIE Zhuangning Research on wind pressure field of large-span flat roof based on dynamic mode decomposition[J]. Engineering Mechanics, 2022, 39 (7): 109- 119
doi: 10.6052/j.issn.1000-4750.2021.04.0247
|
|
|
[21] |
陈伏彬, 唐宾芳, 蔡虬瑞, 等 大跨平屋盖风荷载特性及风压预测研究[J]. 振动与冲击, 2021, 40 (3): 226- 232 CHEN Fubin, TANG Binfang, CAI Qiurui, et al Wind load characteristics and wind pressure prediction of long-span flat roof[J]. Journal of Vibration and Shock, 2021, 40 (3): 226- 232
|
|
|
[22] |
杜坤. 非均匀地形下平屋盖风荷载干扰效应的影响研究[D]. 北京: 北京交通大学, 2016. DU Kun. The influence of heterogeneous terrain wind loads interference effects on flat roof [D]. Beijing: Beijing Jiaotong University, 2016.
|
|
|
[23] |
林强, 刘敏, 杨庆山, 等 非高斯风压峰值因子估计: 基于矩的转换过程法的对比研究[J]. 工程力学, 2020, 37 (4): 78- 86 LIN Qiang, LIU Min, YANG Qingshan, et al A comparative study on moment-based translation process methods for the peak factor estimation of non-gaussian wind pressures[J]. Engineering Mechanics, 2020, 37 (4): 78- 86
|
|
|
[24] |
韩啟金, 刘敏, 杨庆山, 等 基于混合风压分区方法的鞍型屋盖风压分区研究[J]. 建筑结构, 2023, 53 (12): 103- 109 HAN Qijin, LIU Min, YANG Qingshan, et al Study on wind pressure zoning of saddle roof based on mixed wind pressure zoning method[J]. Building Structure, 2023, 53 (12): 103- 109
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|