Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (7): 1467-1478    DOI: 10.3785/j.issn.1008-973X.2024.07.016
    
Experimental study on wind load characteristics of continuous roof with concave surface
Shuren HAO1(),Tian’e LI1,*(),Hui PENG2,Haiquan WU2,Yueqin YAN2,Haiwang LI1,Ning SU3
1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Shanxi Fifth Construction Group Limited Company, Taiyuan 030013, China
3. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
Download: HTML     PDF(2498KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Wind tunnel pressure measurement tests on rigid models of three types of concave surface roofs with different continuous roof numbers were conducted to study the wind load characteristics and provide wind resistance design references for practical engineering. The influences of continuous roof numbers and wind direction angle on the lift coefficient, mean wind pressure coefficient, and peak wind pressure coefficient were systematically analyzed. The results show that the overall lift coefficient decreases with the increase of continuous roof numbers, and the lift coefficient of each roof is greatly affected by the wind direction angle. Under the conditions of different continuous roof numbers and wind direction angles, the whole roof withstands upward wind suction and the mean wind pressure coefficient exhibits complex fluctuations. A significant airflow separation phenomenon appears at the edge of the windward roof, corresponding to high wind suction. The further away from the windward roof, the more stable the distribution of the mean wind pressure coefficient, which was stable at about ?0.1. The continuous roof numbers exhibit a significant influence on the peak pressure coefficient, especially on the negative peak wind pressure coefficient. The minimum value of the negative peak wind pressure coefficient was ?5.1 for the edge roof and ?3.3 for the middle roof. Based on the test results, the mean and peak wind pressure coefficients for different zoning continuous roofs with concave surfaces were given out.



Key wordsconcave surface roof      wind tunnel test      wind load      interference effect      wind pressure zoning     
Received: 29 June 2023      Published: 01 July 2024
CLC:  TP 393.3  
  TU 312.1  
Fund:  国家自然科学基金资助项目(52202415);山西省基础研究计划资助项目(202203021221044);山西五建集团有限公司科研项目(RH2100002871).
Corresponding Authors: Tian’e LI     E-mail: pangshijin2021@163.com;woshitiane@126.com
Cite this article:

Shuren HAO,Tian’e LI,Hui PENG,Haiquan WU,Yueqin YAN,Haiwang LI,Ning SU. Experimental study on wind load characteristics of continuous roof with concave surface. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1467-1478.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.07.016     OR     https://www.zjujournals.com/eng/Y2024/V58/I7/1467


联排凹曲面屋盖的风荷载特性试验研究

为了探究凹曲面屋盖的风荷载特性并为实际工程提供抗风设计参考,对3种联排凹曲面屋盖进行刚性模型风洞测压试验,系统分析联排数及风向角对凹曲面屋盖升力系数、平均风压系数和极值风压系数的影响. 结果表明:屋盖整体升力系数随着联排数的增加不断降低,各屋盖的升力系数受风向角影响较大. 在不同联排数及风向角下,屋盖整体承受向上的风吸力,屋盖的平均风压系数表现出复杂的波动性;在迎风屋盖边缘处的气流分离现象明显,导致该处存在较大风吸力;越远离迎风侧的屋盖,平均风压系数的波动越小,稳定于?0.1. 联排数对极值风压系数的影响不可忽略,尤其是极小值负压系数,边缘屋盖分区极小值负压系数的最小值为?5.1,中间屋盖分区极小值负压系数的最小值为?3.3. 基于试验结果,总结给出不同联排凹曲面屋盖分区的平均风压系数和极值风压系数.


关键词: 凹曲面屋盖,  风洞试验,  风荷载,  干扰效应,  风压分区 
工况屋盖形式联排数测点数
R1A单跨122
R2B-C双跨210
R3B-C-A三跨332
Tab.1 Wind tunnel test conditions and testing points
Fig.1 Testing points arrangement of three-span roofs and wind direction angle
Fig.2 Schematic diagram of wind tunnel test installation
Fig.3 Parameters setting for wind tunnel test
项目尺度/m风速/(m·s?1)时间/min
模型尺度110.01.0
原型尺度25029.883.9
Tab.2 Scale-to-scale ratio for wind tunnel test
Fig.4 Lift coefficient of whole roof and edge roof
Fig.5 Lift coefficient of different roof forms
Fig.6 Distribution of mean wind pressure coefficient
屋盖形式Cp
θ=0°θ=30°θ=60°θ=90°
A(迎风屋盖)?0.36?0.38?0.41?0.52
C(中间屋盖)?0.48?0.34?0.09?0.07
B(背风屋盖)?0.45?0.36?0.20?0.07
Tab.3 Overall mean pressure coefficients of roofs at different wind direction angle (case R3)
Fig.7 Mean wind pressure of roof zoning
Fig.8 Zoning value of mean wind pressure coefficient
分区Cp,R1工况Cp,R2工况Cp,R3工况
θ=0°θ=30°θ=60°θ=90°θ=0°θ=30°θ=60°θ=90°θ=0°θ=30°θ=60°θ=90°
B1?0.88?0.54?0.06?0.04?0.91?0.61?0.050.02
B2?1.02?0.67?0.06?0.08?1.05?0.73?0.070.01
B3?1.05?0.74?0.27?0.16?1.08?0.77?0.25?0.09
B4?1.01?0.90?0.63?0.23?1.04?1.48?0.59?0.17
B5?0.22?0.18?0.05?0.12?0.19?0.08?0.05?0.03
B6?0.23?0.11?0.04?0.16?0.21?0.09?0.08?0.03
B7?0.25?0.22?0.24?0.25?0.24?0.03?0.28?0.12
B8?0.27?0.39?0.39?0.31?0.27?0.44?0.39?0.22
B9?0.09?0.05?0.010.07?0.07?0.02?0.060.07
B10?0.10?0.08?0.010.05?0.07?0.10?0.100.06
B11?0.11?0.21?0.13?0.09?0.09?0.14?0.22?0.09
B12?0.14?0.28?0.25?0.26?0.11?0.35?0.27?0.23
C1?1.00?0.62?0.04?0.38?1.05?0.54?0.050.03
C2?1.08?0.70?0.09?0.54?1.14?0.70?0.07?0.02
C3?1.07?0.73?0.44?0.55?1.14?0.77?0.27?0.10
C4?0.93?1.45?1.13?0.47?0.94?0.90?0.45?0.20
C5?0.24?0.06?0.19?0.60?0.26?0.180.08?0.01
C6?0.200.07?0.34?0.78?0.25?0.140.07?0.07
C7?0.17?0.06?0.65?0.80?0.26?0.24?0.10?0.16
C8?0.18?0.47?0.76?0.68?0.28?0.37?0.28?0.25
C9?0.120.03?0.34?0.23?0.11?0.050.100.11
C10?0.10?0.01?0.41?0.54?0.10?0.070.090.07
C11?0.09?0.27?0.42?0.69?0.10?0.17?0.02?0.05
C12?0.11?0.35?0.38?0.61?0.11?0.22?0.17?0.20
A1?0.69?0.45?0.02?0.26?1.01?0.65?0.04?0.23
A2?0.87?0.59?0.09?0.46?1.09?0.74?0.07?0.40
A3?0.87?0.64?0.40?0.49?1.07?0.80?0.33?0.45
A4?0.50?1.38?1.22?0.67?0.61?0.76?1.42?0.71
A5?0.13?0.10?0.19?0.51?0.22?0.11?0.04?0.41
A6?0.110.09?0.29?0.71?0.18?0.10?0.13?0.60
A7?0.11?0.12?0.57?0.72?0.13?0.19?0.47?0.62
A8?0.06?0.57?0.89?0.86?0.08?0.34?0.91?0.86
A9?0.060.02?0.28?0.20?0.08?0.04?0.26?0.17
A10?0.050.05?0.33?0.46?0.06?0.05?0.34?0.41
A11?0.06?0.18?0.35?0.58?0.05?0.12?0.35?0.53
A12?0.07?0.31?0.49?0.86?0.06?0.22?0.51?0.88
Tab.4 Reference value of mean wind pressure coefficient of roof zoning
Fig.9 Distribution of peak wind pressure coefficient
Fig.10 Peak wind pressure of roof zoning
Fig.11 Zoning value of peak wind pressure coefficient
分区R1工况R2工况R3工况
CpmaxCpminCpmaxCpminCpmaxCpmin
B10.7?5.20.7?5.1
B20.5?3.80.7?3.8
B30.6?2.50.6?2.5
B60.9?2.50.6?2.1
B70.7?2.31.0?2.5
C10.7?3.20.4?3.3
C20.5?2.90.4?2.9
C30.7?2.60.5?2.5
C60.7?2.20.5?1.0
C70.7?2.30.5?1.0
A11.0?4.80.7?3.6
A20.8?3.70.7?3.1
A30.6?2.30.8?2.6
A60.6?2.20.6?2.2
A70.6?2.20.7?2.5
Tab.5 Reference value of peak wind pressure coefficient of roof zoning
[1]   张洪才, 贾华勇, 牛晓宇 关于传统建筑屋面凹曲的探讨[J]. 古建园林技术, 2017, (4): 44- 47
ZHANG Hongcai, JIA Huayong, NIU Xiaoyu Discussion on the roof concave of the traditional architectures[J]. Traditional Chinese Architecture and Gardens, 2017, (4): 44- 47
[2]   QIU Y, SUN Y, WU Y, et al Modeling the mean wind loads on cylindrical roofs with consideration of the Reynolds number effect in uniform flow with low turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 129: 11- 21
doi: 10.1016/j.jweia.2014.02.011
[3]   LI Y Q, TAMURA Y, YOSHIDA A, et al Wind loading and its effects on single-layer reticulated cylindrical shells[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94 (12): 949- 973
doi: 10.1016/j.jweia.2006.04.004
[4]   SU N, PENG S, HONG N, et al Wind tunnel investigation on the wind load of large-span coal sheds with porous gables: influence of gable ventilation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104242
doi: 10.1016/j.jweia.2020.104242
[5]   吴迪, 武岳, 孙瑛 大跨度屋盖结构极值风压概率分布特征研究[J]. 建筑结构学报, 2015, 36 (3): 29- 35
WU Di, WU Yue, SUN Ying Probability distribution characteristics of extreme wind pressure for large span roofs[J]. Journal of Building Structures, 2015, 36 (3): 29- 35
[6]   高亮, 崔欣, 白桦, 等 某大跨度波浪形屋面体型系数取值研究[J]. 西安理工大学学报, 2016, 32 (3): 328- 332
GAO Liang, CUI Xin, BAI Hua, et al Analogical researchon shape coefficient of the abnormal roofing structure with the standard[J]. Journal of Xi’an University of Technology, 2016, 32 (3): 328- 332
[7]   桑冲 体育馆凹曲面屋盖风压特性及干扰效应的风洞试验研究[J]. 铁道勘测与设计, 2014, (1): 59- 66
SANG Chong Wind tunnel test research on wind load and interference effect on the concave surface roof of gymnasium[J]. Railway Survey and Design, 2014, (1): 59- 66
[8]   聂少锋, 孙玉金, 毛路, 等 弧形内凹大跨屋盖结构风荷载特性的风洞试验与数值模拟[J]. 西安建筑科技大学学报: 自然科学版, 2016, 48 (5): 669- 675
NIE Shaofeng, SUN Yujin, MAO Lu, et al Wind tunnel test and numerical simulation on wind load characteristics of large-span roof with concave surface[J]. Journal of Xi’an University of Architecture and Technology: Natural Science Edition, 2016, 48 (5): 669- 675
[9]   滕起, 张相勇, 孙建平, 等 弧形内凹连续坡屋面风压特性的数值模拟[J]. 空间结构, 2019, 25 (4): 43- 50
TENG Qi, ZHANG Xiangyong, SUN Jianping, et al Numerical simulation of wind pressure characteristics on a slope roof with consecutive concave surfaces[J]. Spatial Structures, 2019, 25 (4): 43- 50
[10]   马文勇, 刘庆宽, 尉耀元 具有凹面外形的大跨屋盖结构风荷载分布及风洞试验研究[J]. 振动与冲击, 2012, 31 (22): 34- 38
MA Wenyong, LIU Qingkuan, WEI Yaoyuan Wind load distribution and wind tunnel test for a curved concave long-span roof[J]. Journal of Vibration and Shock, 2012, 31 (22): 34- 38
doi: 10.3969/j.issn.1000-3835.2012.22.007
[11]   中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012: 30–53.
[12]   American Society of Civil Engineers. Minimum design loads for buildings and other structures: ASCE/SEI 7-10 [S]. Reston: ASCE, 2010: 187–201.
[13]   中华人民共和国住房和城乡建设部. 索结构技术规程: JGJ 257—2012 [S]. 北京: 中国建筑工业出版社, 2012: 46–47.
[14]   王秀丽, 刘永周 矢跨比和垂跨比对张弦立体桁架性能的影响分析[J]. 空间结构, 2005, 35 (1): 35- 39
WANG Xiuli, LIU Yongzhou Influences of rise-to-span ratio and sag-to-span ratio on the prestressed spatial truss string structure[J]. Spatial Structures, 2005, 35 (1): 35- 39
doi: 10.3969/j.issn.1006-6578.2005.01.007
[15]   LAROSE G L, D’AUTEUIL A Experiments on 2D rectangular prisms at high Reynolds numbers in a pressurised wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (6/7): 923- 933
[16]   孙瑛, 武岳, 林志兴, 等 大跨度平屋盖表面的特征湍流研究[J]. 空气动力学学报, 2007, 25 (3): 319- 324
SUN Ying, WU Yue, LIN Zhixing, et al Characteristics of signature turbulence on long span flat roofs[J]. Acta Aerodynamica Sinica, 2007, 25 (3): 319- 324
doi: 10.3969/j.issn.0258-1825.2007.03.007
[17]   中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T 338—2014 [S]. 北京: 中国建筑工业出版社, 2014: 5–9.
[18]   KAY N J, OO N L, GILL M S, et al Robustness of the digital filter to differing calibration flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104061
doi: 10.1016/j.jweia.2019.104061
[19]   陈波, 程行, 张丽娜, 等 不同排列方式平屋面建筑群极值风荷载干扰效应影响研究[J]. 建筑结构学报, 2018, 39 (10): 1- 10
CHEN Bo, CHENG Hang, ZHANG Lina, et al Investigation on interference effects on peak wind loads on a group of buildings with flat roof under different arrangements[J]. Journal of Building Structures, 2018, 39 (10): 1- 10
[20]   冯帅, 谢壮宁 基于动力学模态分解的大跨度平屋盖风压场研究[J]. 工程力学, 2022, 39 (7): 109- 119
FENG Shuai, XIE Zhuangning Research on wind pressure field of large-span flat roof based on dynamic mode decomposition[J]. Engineering Mechanics, 2022, 39 (7): 109- 119
doi: 10.6052/j.issn.1000-4750.2021.04.0247
[21]   陈伏彬, 唐宾芳, 蔡虬瑞, 等 大跨平屋盖风荷载特性及风压预测研究[J]. 振动与冲击, 2021, 40 (3): 226- 232
CHEN Fubin, TANG Binfang, CAI Qiurui, et al Wind load characteristics and wind pressure prediction of long-span flat roof[J]. Journal of Vibration and Shock, 2021, 40 (3): 226- 232
[22]   杜坤. 非均匀地形下平屋盖风荷载干扰效应的影响研究[D]. 北京: 北京交通大学, 2016.
DU Kun. The influence of heterogeneous terrain wind loads interference effects on flat roof [D]. Beijing: Beijing Jiaotong University, 2016.
[23]   林强, 刘敏, 杨庆山, 等 非高斯风压峰值因子估计: 基于矩的转换过程法的对比研究[J]. 工程力学, 2020, 37 (4): 78- 86
LIN Qiang, LIU Min, YANG Qingshan, et al A comparative study on moment-based translation process methods for the peak factor estimation of non-gaussian wind pressures[J]. Engineering Mechanics, 2020, 37 (4): 78- 86
[24]   韩啟金, 刘敏, 杨庆山, 等 基于混合风压分区方法的鞍型屋盖风压分区研究[J]. 建筑结构, 2023, 53 (12): 103- 109
HAN Qijin, LIU Min, YANG Qingshan, et al Study on wind pressure zoning of saddle roof based on mixed wind pressure zoning method[J]. Building Structure, 2023, 53 (12): 103- 109
[1] Guo-qing HE,Yi-tian TANG. Influence of exhaust wind cowls on wind driven ventilation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 591-597.
[2] Guo-hui SHEN,Bao-heng LI,Yong GUO,Zheng ZHAO,Feng PAN. Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 579-589.
[3] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[4] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[5] Zhi-song WANG,Jun DENG,Zhi-yuan FANG,Yuan-yuan CHEN. Large eddy simulation of wind load on low-rise buildings subjected to downburst[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 512-520.
[6] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[7] Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.
[8] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1631-1637.
[9] LIU Bo-kai, GAO Hong-li, WU Ying-chuan, ZHANG Xiao-qing, LI Shi-chao. New suspension force measuring system in impulse combustion wind tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 619-627.
[10] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[11] ZHANG Yang, SHEN Guo-hui, YU Shi-ce, MA Yu-cong, ZHANG Rui. Experimental study on aeolian noise generated by transmission lines using wind tunnel testing[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1494-1499.
[12] XU Hai wei, LOU Wen juan, LI Tian hao, LIANG Hong chao, ZHANG Li gang, LU Ming. Wind-induced swing investigation on transmission line jumper wire under hilly terrain[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 264-272.
[13] GUI Long-hui, XIE Ji-ming, LIN Ying-zi, ZHANG Hong-wei. Aeroelastic model study of cantilever skywalk bridge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2121-2129.
[14] SHEN Guo hui, YAO Dan, YU Shi ce, LOU Wen juan, XING Yue long, PAN Feng. Wind tunnel test of wind field characteristics on isolated hill and two adjacent hills[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 805-812.
[15] LOU Wen juan, LUO Gang, HU Wen kan. Calculation method for equivalent static wind loads and wind load adjustment coefficients for transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2120-2127.