Dynamic triaxial, SEM, NMR and other tests were carried out under cyclic loading and corrosive environment to analyze the dynamic stress-strain, dynamic elastic modulus, damping ratio and microscopic pore changes in nano-Al2O3 modified coastal cement soil. Test results show that the dynamic strain increases with the increase of dynamic stress, and the dynamic elastic modulus decreases with the increase of dynamic stress. The increase in loading frequency makes the dynamic strain decrease and the dynamic elastic modulus increase. The increase in the mass fraction of set salt makes the dynamic strain increase and the dynamic elastic modulus decrease. The damping ratio-dynamic strain curve of nano-Al2O3 modified cement soil gradually moves down with the increase of loading frequency, and the intersection point of the curves appears at different loading frequencies, and the intersection point moves to the right with the increase of the mass fraction of set salt. The peak value and peak area of the main peak of the relaxation time distribution curve of the nano-Al2O3 modified cement soil were significantly lower than those of the pure cement soil, and the C-S-H and C-A-H gel substances were cemented in the soil pores to form a spatial network structure, and the cementation effect was significant. Nano-Al2O3 modified cement soil showed a significant reduction in porosity at small sea salt mass fractions and exhibited lower porosity compared to the pure cement soil.
Xinshan ZHUANG,Benchi YANG,Gaoliang TAO. Dynamic characteristics and micro-mechanisms of coastal cement soil modified by nano-Al2O3. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1457-1466.
Fig.2Dynamic stress-strain curves of modified cement soil
Fig.3Dynamic stress-strain curves of modified cement soil under different corrosion environments
Fig.4Dynamic elastic modulus-dynamic stress curves of modified cement soil
Fig.5Relationship between dynamic elastic modulus of modified cement soil and mass fraction of sea salt at different frequencies
Fig.6Stress-strain hysteresis curve in modified cement soil
Fig.7Damping ratio-dynamic stress curves of modified cement soil
Fig.8Relationship between damping ratio of modified cement soils and mass fraction of sea salt at different frequencies
Fig.9SEM diagram of nano-Al2O3 modified cement soil(magnification of 3000)
Fig.10SEM diagram of nano-Al2O3 modified cement soil(magnification of 10 000)
Fig.11Relaxation time distribution curve of nano-Al2O3 modified cement soil under different corrosion environments
Fig.12Relaxation time distribution curve of cement soil before and after modification with nano-Al2O3
Fig.13Microscopic mechanism model of nano-Al2O3 modified cement soil
[28]
WEI Mingli, DU Yanjun, ZHANG Fan Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soils[J]. Rock and Soil Mechanics, 2011, 32 (Suppl.2): 306- 312
[29]
谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011: 297–303.
[30]
李甜果, 孔令伟, 王俊涛, 等 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42 (10): 2741- 2754 LI Tianguo, KONG Lingwei, WANG Juntao, et al Trimodal pore structure evolution characteristics and mechanical effects of expansive soil in seasonally frozen areas based on NMR test[J]. Rock and Soil Mechanics, 2021, 42 (10): 2741- 2754
[1]
王伟, 刘静静, 李娜, 等 纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制[J]. 复合材料学报, 2022, 39 (4): 1701- 1714 WANG Wei, LIU Jingjing, LI Na, et al Mechanical properties and micro mechanism of nano-SiO2 modified coastal cement soil at short age[J]. Acta Materiae Compositae Sinica, 2022, 39 (4): 1701- 1714
[2]
BASHA E A, HASHIM R, MAHMUD H B, et al Stabilization of residual soil with rice husk ash and cement[J]. Construction and Building Materials, 2005, 19 (6): 448- 453
doi: 10.1016/j.conbuildmat.2004.08.001
[3]
AHMAD M R, CHEN B, YU J A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash[J]. Composites Part B: Engineering, 2019, 168: 204- 217
doi: 10.1016/j.compositesb.2018.12.065
[4]
QIN L, GAO X Properties of coal gangue-Portland cement mixture with carbonation[J]. Fuel, 2019, 245: 1- 12
doi: 10.1016/j.fuel.2019.02.067
[5]
高常辉, 马芹永 水泥砂浆固化粉质黏土分离式Hopkinson 压杆试验与分析[J]. 复合材料学报, 2018, 35 (6): 1629- 1635 GAO Changhui, MA Qingyong Analysis of silty clay stabilized by cement mortar based on split Hopkinson pressure bar experiment[J]. Acta Materiae Compositae Sinica, 2018, 35 (6): 1629- 1635
[6]
万志辉, 戴国亮, 龚维明, 等 海水环境下钙质砂水泥土加固体的微观侵蚀机制试验研究[J]. 岩土力学, 2021, 42 (7): 1871- 1882 WAN Zhihui, DAI Guoliang, GONG Weiming, et al Experimental study on micro-erosion mechanism of cement stabilized calcareous sand under seawater environment[J]. Rock and Soil Mechanics, 2021, 42 (7): 1871- 1882
[7]
刘泉声, 屈家旺, 柳志平, 等 侵蚀影响下水泥土的力学性质试验研究[J]. 岩土力学, 2014, 35 (12): 3377- 3384 LIU Quansheng, QU Jiawang, LIU Zhiping, et al Experimental study of mechanical properties of cemented soil under corrosion influence[J]. Rock and Soil Mechanics, 2014, 35 (12): 3377- 3384
[8]
吴燕开, 史可健, 胡晓士, 等 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41 (6): 1014- 1022 WU Yankai, SHI Kejian, HU Xiaoshi, et al Experimental study on strength degradation of steel slag + cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (6): 1014- 1022
doi: 10.11779/CJGE201906004
[9]
闫楠, 杨俊杰, 刘强, 等 海水环境下水泥土强度衰减过程室内试验研究[J]. 土木工程学报, 2017, 50 (11): 115- 124 YAN Nan, YANG Junjie, LIU Qiang, et al Laboratory test on strength deterioration process of soil cement in seawater environment[J]. China Civil Engineering Journal, 2017, 50 (11): 115- 124
[10]
LIN D, LIN K L, CHANG W C, et al Improvements of nano-SiO2 on sludge/fly ash mortar[J]. Waste Management, 2008, 28 (6): 1081- 1087
doi: 10.1016/j.wasman.2007.03.023
[11]
KUO W T, LIN K L, CHANG W C, et al Effects of nano-materials on properties of waterworks sludge ash cement paste[J]. Journal of Industrial and Engineering Chemistry, 2006, 12 (5): 702- 709
[12]
王立峰, 朱向荣 纳米硅水泥土强度研究和经济分析[J]. 浙江建筑, 2005, 22 (4): 57- 60 WANG Lifeng, ZHU Xiangrong Strength study and economic analysis of nanosilica cement soil[J]. Zhejiang Construction, 2005, 22 (4): 57- 60
doi: 10.3969/j.issn.1008-3707.2005.04.024
[13]
OZEN M Y, DERUN E M A comparative study: effects of different nanoparticles on the properties of gold mine tailings containing cement mortars[J]. Construction and Building Materials, 2019, 202: 396- 405
doi: 10.1016/j.conbuildmat.2019.01.042
[14]
李刚. 纳米材料水泥土工程性状试验研究[D]. 杭州: 浙江大学, 2003. LI Gang. Experiment study on engineering properties of nanometerial-reinforced cement-stabilized soil [D]. Hangzhou: Zhejiang University, 2003.
[15]
ÇELIK S, NEGAHDAR A, BAROUGH M J. Effect of nano-particles on geotechnical engineering properties of granular soils by using injection method [J]. Journal of Biochemical Technology, 2019(Special 2): 56–60.
[16]
MIR B A, REDDY S H Mechanical behaviour of nano-material (Al2O3) stabilized soft soil[J]. International Journal of Engineering, 2021, 34: 636- 643
[17]
JAHROMI S G, ZAHEDI H Investigating the effecting of nano aluminum on mechanical and volumetric properties of clay[J]. Amirkabir Journal of Civil Engineering, 2018, 50 (3): 597- 606
[18]
JIAN Z B, XING X D, SUN P C The effect of nanoalumina on early hydration and mechanical properties of cement pastes[J]. Construction and Building Materials, 2019, 202: 169- 176
doi: 10.1016/j.conbuildmat.2019.01.022
[19]
MOLA-ABASI H, KHAJEH A, SEMSANI S N, et al Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands[J]. Journal of Materials in Civil Engineering, 2018, 30 (4): 1- 9
[20]
丁继辉, 冯俊辉, 张攀星, 等 CFG芯水泥土环组合桩复合地基动力特性试验研究[J]. 工程力学, 2015, 32 (Suppl.1): 284- 288 DING Jihui, FENG Junhui, ZHANG Panxing, et al Experimental study on dynamic characteristics of composite foundations of rammed cement-soil loop piles with CFG cores[J]. Engineering Mechanics, 2015, 32 (Suppl.1): 284- 288
doi: 10.6052/j.issn.1000-4750.2014.05.S041
[21]
江国龙, 陈四利, 王军祥, 等 循环荷载作用下水泥土力学特性试验研究[J]. 地下空间与工程学报, 2017, 13 (Suppl.2): 524- 528 JIANG Guolong, CHEN Sili, WANG Junxiang, et al Experimental study on mechanical properties of cement-soil under cycle load[J]. Chinese Journal of Underground Space and Engineering, 2017, 13 (Suppl.2): 524- 528
[22]
BIN-SHAFIQUE S, RAHMAN K, YAYKIRAN M, et al The long-term performance of two fly ash stabilized fine-grained soil subbases[J]. Resources, Conservation and Recycling, 2010, 54 (10): 666- 672
doi: 10.1016/j.resconrec.2009.11.007
[23]
董城, 杨献章, 刘文劼, 等 湘南红黏土公路路基压实度标准研究[J]. 公路交通科技, 2017, 34 (2): 42- 49 DONG Cheng, YANG Xianzhang, LIU Wenjie, et al Study on compaction degree criterion of red clay highway subgrade in southern Hunan[J]. Journal of Highway and Transportation Research and Development, 2017, 34 (2): 42- 49
[24]
罗金 室内试验公路交通荷载参数的确定[J]. 低温建筑技术, 2015, (3): 121- 123 LUO Jin Determination of traffic load parameters of highway in laboratory test[J]. Low Temperature Architecture Technology, 2015, (3): 121- 123
[25]
丁智, 郑勇, 魏新江, 等 不同加载频率及循环应力水平对人工冻融软土动力特性影响试验研究[J]. 铁道学报, 2020, 42 (3): 122- 128 DING Zhi, ZHENG Yong, WEI Xinjiang, et al Experimental study on the effect of different loading frequency and cyclic stress level for dynamic behaviour of artificial frozen-thawed soft soil[J]. Journal of the China Railway Society, 2020, 42 (3): 122- 128
doi: 10.3969/j.issn.1001-8360.2020.03.015
[26]
王元东, 唐益群, 廖少明, 等 地铁行车荷载下隧道周围加固软粘土孔压特性试验[J]. 吉林大学学报: 地球科学版, 2011, 41 (1): 188- 194 WANG Yuandong, TANG Yiqun, LIAO Shaoming, et al Experimental of pore pressure of reinforced soft clay around tunnel under subway vibrational loading[J]. Journal of Jilin University: Earth Science Edition, 2011, 41 (1): 188- 194
[27]
庄心善, 周睦凯, 周荣, 等 EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报: 工学版, 2022, 56 (7): 1353- 1362 ZHUANG Xinshan, ZHOU Mukai, ZHOU Rong, et al Pore characteristics and hysteresis curve morphology of expansive soil improved by EPS[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1353- 1362