Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 176-187    DOI: 10.3785/j.issn.1008-973X.2024.01.019
    
Pollutant diffusion law during high-altitude tunnel construction
Xingyu CHEN1(),Jian WU2,Song REN1,*(),Ping ZHANG1,Chao DENG1,Lingwei KONG3
1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
2. China Railway Southwest Research Institute Limited Company, Chengdu 611731, China
3. Zhaotong Zhaolu Expressway Investment and Development Limited Company, Zhaotong 657000, China
Download: HTML     PDF(2775KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Numerical simulation and on-site testing methods were used to analyze the diffusion law of dust and CO during the ventilation process of high-altitude tunnel construction by relying on the Mangkang Mountain Tunnel Project of the Sichuan Tibet Railway in order to analyze the diffusion law of pollutants during the ventilation process of high-altitude tunnel construction. Results show that dust mainly diffuses towards the outside of the tunnel in the form of wall-adhering flow, and it accumulates into ‘dust clusters’ during this process. Dust diffusion is mainly influenced by gravity and causes sedimentation. Excessive wind speed in the tunnel is not conducive to reducing dust mass concentration. CO migrates in the form of ‘air masses’ from the vicinity of the palm face to the entrance of the cave. The volume of CO air masses gradually expands during the migration process, and the mass concentration peak continuously decreases, gradually forming a ‘U-shaped’ distribution trend. The on-site test results of CO mass concentration basically accorded with the numerical simulation results. The CO mass concentration in the tunnel will increase as the altitude increases, and the time it takes for the CO mass concentration at the same location in the tunnel to meet the standard requirements will increase. A formula for calculating the correction coefficient of CO mass concentration during tunnel ventilation was derived based on altitude, which is a good supplement to the altitude correction coefficient of CO in the current specifications.



Key wordshigh-altitude tunnel      ventilation      pollutant dispersion      field testing      correction factor     
Received: 29 March 2023      Published: 07 November 2023
CLC:  X 947  
Fund:  国家自然科学基金资助项目(52074048)
Corresponding Authors: Song REN     E-mail: CXY0018@cqu.edu.cn;rs_rwx@163.com
Cite this article:

Xingyu CHEN,Jian WU,Song REN,Ping ZHANG,Chao DENG,Lingwei KONG. Pollutant diffusion law during high-altitude tunnel construction. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 176-187.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.01.019     OR     https://www.zjujournals.com/eng/Y2024/V58/I1/176


高海拔隧道施工期污染物扩散规律

为了探究高海拔隧道施工通风过程中的污染物扩散规律,依托川藏铁路芒康山隧道工程,采用数值模拟和现场测试的方法,研究高海拔隧道施工通风过程中粉尘和CO的扩散规律. 研究结果表明,粉尘主要是以贴壁流动的形式向洞外扩散,在该过程中会聚集成为“粉尘团”. 粉尘扩散主要是受到重力影响发生沉降,隧道内风速过大,不利于降低粉尘质量浓度. CO以“气团”的形式从掌子面附近向洞口迁移,在迁移过程中CO气团体积逐渐扩大,质量浓度峰值不断下降,逐渐形成“U形”的分布趋势,CO质量浓度的现场测试结果与数值模拟结果基本吻合. 随着海拔高度的上升,隧道内的CO质量浓度会增大,隧道内同一位置CO质量浓度达到规范要求的时间会增加. 推导基于海拔高度的隧道通风过程中CO质量浓度修正系数计算公式,对当前规范中CO的海拔高度修正系数进行很好的补充.


关键词: 高海拔隧道,  通风,  污染物扩散,  现场测试,  修正系数 
Fig.1 Sectional view of tunnel model
Fig.2 Wind speed variation along different meshes
Fig.3 Geometry and meshing of numerical model
Fig.4 Grid division of tunnel inlet
Fig.5 Schematic diagram of blasting throwing distance
边界条件 设定值
入口边界风速/(m·s?1) 20.8
风筒直径/m 1.8
湍流强度/% 2.8
出口边界 Pressure-out
空气密度 由海拔高度具体确定
操作压力 由海拔高度具体确定
壁面粗糙度 与掌子面距离小于65 m的区域内为0.08 m,
其余区域为0.01 m
Wall边界 无滑移
Tab.1 Setting of boundary conditions for simulating carbon monoxide diffusion
计算模型 模型设定
求解器 Pressure-Based
时间子步/s 0.05
湍流模型 Standard k-ε两方程
近壁处理 Standard Wall Functions
能量方程 On
组分输运模型 On
压力速度耦合 Piso
梯度格式 Green-Gauss Node Based
离散格式 Second Order Upwind
Tab.2 Setting of carbon monoxide diffusion calculation model
边界条件 设置
风筒入口 根据计算需求设置
风筒水力直径/m 1.8
风筒出口 Interior(内部面)
风筒壁面粗糙度/m 0
湍流强度/% 2.8
空气密度 由海拔高度具体确定
操作压力 由海拔高度具体确定
隧道壁面粗糙度 与掌子面距离小于65 m的区域内为0.08 m,
其余区域为0.01 m
隧道壁面 无滑移
Tab.3 Setting of boundary conditions for simulating dust diffusion
离散型模型 设置值
相间耦合 选择
相间耦合频率/Hz 50
最大计算步数 500 000
长度/m 0.02
喷射类型 Surface
粒径分布 Rosin-Rammler
分布指数 2.543
粉尘质量浓度/(kg·m?3) 2 320
粉尘质量流量/(kg·s?1) 0.228
粉尘最小直径/μm 1.00
粉尘中间直径/μm 19.99
粉尘最大直径/μm 100.00
粉尘释放初速度/(m·s?1) 20.0
Saffman升力 选择
隧道壁面 地面为trap类型
除地面以外的其他壁面为reflect类型
Tab.4 Parameter setting of discrete phase model
计算模型 设置
求解器 Pressure-Based
时间子步/s 0.001
湍流模型 Standard k-ε两方程
壁面 Standard Wall Functions
能量方程 Off
离散型模型 On
压力速度耦合 PISO
梯度格式 Green-Gauss Node Based
离散格式 Second Order Upwind
Tab.5 Setting of dust diffusion calculation model
Fig.6 Flow stream line distribution of air flow field around tunnel face
Fig.7 Wind speed distribution of tunnel section at different distances from tunnel face
Fig.8 Three-dimensional cloud diagram of tunnel dust diffusion at different time
Fig.9 Dust distribution of tunnel section at different distances from tunnel face
Fig.10 Variation of dust mass concentration with time at different distances from tunnel face
Fig.11 Cloud diagram of CO mass concentration distribution in tunnel at different time
Fig.12 Cloud diagram of CO mass concentration distribution at different time in different sections
Fig.13 Cloud map of CO distribution in typical section of tunnel
Fig.14 Distribution of CO mass concentration at respiratory zone height in tunnel
Fig.15 Carbon monoxide measuring instrument
仪器设备名称 仪器功能 仪器精度
DECEMLDD260
激光测距仪
测量隧道相关尺寸和标记后续测试点位置 最小分度为0.001 m,测试范围为0.05~60 m
MOT500-CO-Y(红外3%)CO测试仪 测量隧道内断面不同位置的CO质量浓度 最小分度为0.000 1%,测试范围为0~0.5%
Tab.6 Field test equipments and their functions
Fig.16 Comparison of CO diffusion numerical simulation and field measurement results in tunnel
工况 H/m pa/kPa ρa/(kg·m?3)
1 0 101.325 1.225 7
2 1 000 89.870 1.112 2
3 2 000 79.490 1.007 0
4 3 000 70.106 0.909 6
5 4 000 61.642 0.819 6
6 5 000 54.028 0.736 6
Tab.7 Condition parameters at different altitudes
Fig.17 Variation of CO mass concentration at different altitudes
距掌子面距离(m) ρ/(kg·m?3)
H = 0 km H = 1 km H = 2 km H = 3 km H = 4 km H = 5 km
50 0.000 204 9 0.000 226 5 0.000 250 3 0.000 276 6 0.000 305 7 0.000 337 9
55 0.000 222 1 0.000 245 5 0.000 271 4 0.000 299 9 0.000 331 4 0.000 366 3
60 0.000 243 0 0.000 268 6 0.000 296 8 0.000 328 1 0.000 362 5 0.000 400 7
65 0.000 273 3 0.000 302 1 0.000 333 9 0.000 369 0 0.000 407 8 0.000 450 7
70 0.000 294 0 0.000 324 9 0.000 359 1 0.000 396 8 0.000 438 6 0.000 484 7
75 0.000 294 7 0.000 325 8 0.000 360 1 0.000 397 9 0.000 439 7 0.000 485 9
80 0.000 368 7 0.000 407 6 0.000 450 4 0.000 497 8 0.000 550 1 0.000 608 0
85 0.000 486 5 0.000 537 7 0.000 594 3 0.000 656 7 0.000 725 8 0.000 802 2
90 0.000 524 6 0.000 579 8 0.000 640 7 0.000 708 1 0.000 782 6 0.000 864 9
95 0.000 530 9 0.000 586 8 0.000 648 5 0.000 716 7 0.000 792 1 0.000 875 4
100 0.000 584 3 0.000 645 8 0.000 713 7 0.000 788 8 0.000 871 7 0.000 963 4
105 0.000 712 2 0.000 787 1 0.000 869 9 0.000 961 3 0.001 062 5 0.001 174 3
110 0.000 834 0 0.000 921 7 0.001 018 7 0.001 125 7 0.001 244 2 0.001 375 1
115 0.000 970 2 0.001 072 3 0.001 185 1 0.001 309 6 0.001 447 4 0.001 599 7
120 0.001 140 5 0.001 260 4 0.001 392 9 0.001 539 4 0.001 701 3 0.001 880 3
125 0.001 310 2 0.001 448 1 0.001 600 3 0.001 768 5 0.001 954 6 0.002 160 2
130 0.001 435 0 0.001 585 9 0.001 752 7 0.001 936 9 0.002 140 7 0.002 365 9
135 0.001 472 7 0.001 627 6 0.001 798 7 0.001 987 8 0.002 196 9 0.002 428 1
140 0.001 407 9 0.001 555 9 0.001 719 6 0.001 900 4 0.002 100 3 0.002 321 2
145 0.001 275 3 0.001 409 4 0.001 557 6 0.001 721 4 0.001 902 5 0.002 102 6
150 0.001 112 1 0.001 229 1 0.001 358 3 0.001 501 1 0.001 659 1 0.001 833 5
155 0.000 922 0 0.001 018 9 0.001 126 1 0.001 244 5 0.001 375 4 0.001 520 1
160 0.000 692 8 0.000 765 7 0.000 846 2 0.000 935 2 0.001 033 6 0.001 142 3
Tab.8 Variation of CO mass concentration at different altitudes
H/km K H/km K
0 1 3 1.343
1 1.123 4 1.482
2 1.201 5 1.623
Tab.9 Average value of CO mass concentration correction coefficient at different altitudes
Fig.18 Fitting curve of CO mass concentration altitude correction coefficient
Fig.19 Time required for CO mass concentration at different altitudes to reach specified concentration
[1]   赵勇, 石少帅, 田四明, 等 川藏铁路雅安至林芝段隧道建造面临的主要工程技术难题与对策建议[J]. 隧道建设(中英文), 2021, 41 (7): 1079- 1090
ZHAO Yong, SHI Shaoshuai, TIAN Siming, et al Technical difficulties and countermeasure suggestions in tunnel construction of Ya'an-Linzhi Section of Sichuan-Tibet Railway[J]. Tunnel Construction, 2021, 41 (7): 1079- 1090
[2]   SASMITO A P, BIRGERSSON E, LY H C, et al Some approaches to improve ventilation system in underground coal mines environment: a computational fluid dynamic study[J]. Tunnelling and Underground Space Technology, 2013, 34: 82- 95
doi: 10.1016/j.tust.2012.09.006
[3]   GOSTEEV Y A, FEDOROV A V Calculation of dust lifting by a transient shock wave[J]. Combustion, Explosion and Shock Waves, 2002, 38 (3): 322- 326
doi: 10.1023/A:1015657904264
[4]   KHMEL T, FEDOROV A Numerical simulation of dust dispersion using molecular-kinetic model for description of particle-to-particle collisions[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 223- 229
doi: 10.1016/j.jlp.2015.02.006
[5]   TORAÑO J, TORNO S, MENÉNDEZ M, et al Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour[J]. Tunnelling and Underground Space Technology, 2011, 26 (1): 201- 210
doi: 10.1016/j.tust.2010.07.005
[6]   HU S Y, LIAO Q, FENG G R, et al Influences of ventilation velocity on dust dispersion in coal roadways[J]. Powder Technology, 2020, 360: 683- 694
doi: 10.1016/j.powtec.2019.09.080
[7]   GENG F, LUO G, ZHOU F B, et al Numerical investigation of dust dispersion in a coal roadway with hybrid ventilation system[J]. Powder Technology, 2017, 313: 260- 271
doi: 10.1016/j.powtec.2017.03.021
[8]   ZHAO Y, AMBROSE R P K Modeling dust dispersion and suspension pattern under turbulence[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103934
doi: 10.1016/j.jlp.2019.103934
[9]   刘钊春, 柴军瑞, 贾晓梅, 等 曙压入式通风掘进面有害气体浓度扩散数值模拟[J]. 岩土力学, 2009, 30 (Supple.2): 536- 539
LIU Zhaochun, CHAI Junrui, JIA Xiaomei, et al Numerical simulation of concentration diffusion of harmful gas in heading face with forced ventilation[J]. Rock and Soil Mechanics, 2009, 30 (Supple.2): 536- 539
[10]   李孜军, 林晓光, 李明, 等 双洞隧道独头掘进CO扩散效应模拟分析[J]. 铁道科学与工程学报, 2013, 10 (4): 82- 87
LI Zijun, LIN Xiaoguang, LI Ming, et al Simulation analysis of CO diffusion for double tube tunneling excavated from single end[J]. Journal of Railway Science and Engineering, 2013, 10 (4): 82- 87
[11]   秦跃平, 张苗苗, 崔丽洁, 等 综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J]. 北京科技大学学报, 2011, 33 (7): 790- 794
QIN Yueping, ZHANG Miaomiao, CUI Lijie, et al Numerical simulation of dust migration and study on dust removal modes with the forced ventilation shunt in a fully mechanized workface[J]. Journal of University of Science and Technology Beijing, 2011, 33 (7): 790- 794
[12]   曹传文 高海拔大坂山隧道通风技术参数的分析和修正研究[J]. 石家庄铁路职业技术学院学报, 2017, 16 (1): 33- 38
CAO Chuanwen Analysis and correction of high altitude Daban Mountain Tunnel ventilation parameters[J]. Journal of Shijiazhuang Institute of Railway Technology, 2017, 16 (1): 33- 38
doi: 10.3969/j.issn.1673-1816.2017.01.007
[13]   苟红松, 李永生, 罗占夫 高海拔地区隧道施工通风风量计算及风机选型研究[J]. 隧道建设, 2012, 32 (1): 53- 56
GOU Hongsong, LI Yongsheng, LUO Zhanfu Study on air volume calculation and fan selection for tunneling ventilation in plateau area[J]. Tunnel Construction, 2012, 32 (1): 53- 56
[14]   严涛, 包逸帆, 秦鹏程, 等 高海拔隧道施工通风及供氧关键参数研究综述[J]. 现代隧道技术, 2019, 56 (Supple.2): 572- 577
YAN Tao, BAO Yifan, QIN Pengcheng, et al Review on key parameters of ventilation and oxygen supply in high-altitude tunnel construction[J]. Modern Tunnelling Technology, 2019, 56 (Supple.2): 572- 577
[15]   李琦, 于丽, 严涛, 等 高海拔隧道施工通风风管漏风率研究[J]. 铁道学报, 2019, 41 (1): 144- 148
LI Qi, YU Li, YAN Tao, et al Study on construction ventilation duct leakage rate in high altitude tunnel[J]. Journal of the China Railway Society, 2019, 41 (1): 144- 148
[16]   陈湛文, 王明年, 郭佳城, 等 基于开孔面积的高海拔隧道风管漏风率研究[J]. 中国铁道科学, 2022, 43 (5): 60- 69
CHEN Zhanwen, WANG Mingnian, GUO Jiacheng, et al Study on air duct leakage rate in high-altitude tunnel based on opening area[J]. China Railway Science, 2022, 43 (5): 60- 69
[17]   严涛, 王明年, 郭春, 等 高海拔隧道中考虑CO和烟雾的海拔高度系数[J]. 中南大学学报: 自然科学版, 2014, 45 (11): 4012- 4017
YAN Tao, WANG Mingnian, GUO Chun, et al Altitude coefficient considering CO and smoke emission in high altitude highway tunnels[J]. Journal of Central South University: Science and Technology, 2014, 45 (11): 4012- 4017
[18]   严涛, 王明年, 郭春, 等 公路隧道考虑多车型的CO海拔高度系数研究[J]. 现代隧道技术, 2015, 52 (3): 8- 13
YAN Tao, WANG Mingnian, GUO Chun, et al On altitude coefficient considering CO from various kinds of vehicles in highway tunnels[J]. Modern Tunnelling Technology, 2015, 52 (3): 8- 13
[19]   郭志杰, 孙涛, 张灿程, 等 高海拔超长隧道通风烟雾、CO基准排放量折减率取值建议[J]. 地下空间与工程学报, 2020, 16 (Supple.1): 341- 345
GUO Zhijie, SUN Tao, ZHANG Cancheng, et al Suggestions on discount rate of CO and smoke baseline emission of high altitude and super long tunnel ventilation[J]. Chinese Journal of Underground Space and Engineering, 2020, 16 (Supple.1): 341- 345
[20]   曹正卯, 刘晓, 牛柏川 高海拔公路隧道施工期粉尘运移特性研究[J]. 地下空间与工程学报, 2019, 15 (3): 927- 935
CAO Zhengmao, LIU Xiao, NIU Baichuan Migration characteristics of dust during construction stage in highway tunnels at high altitude areas[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (3): 927- 935
[21]   曹正卯, 杨其新, 郭春 高海拔地区铁路隧道施工期有害气体运移特性[J]. 中南大学学报: 自然科学版, 2016, 47 (11): 3948- 3957
CAO Zhengmao, YANG Qixin, GUO Chun Migration characteristics of poisonous gas during construction stage in railway tunnels at high altitude areas[J]. Journal of Central South University: Science and Technology, 2016, 47 (11): 3948- 3957
[22]   蒋仲安, 曾发镔, 冯雪, 等 高海拔隧道爆破后粉尘污染动力学模型及影响因素[J]. 煤炭学报, 2023, 48 (1): 263- 278
JIANG Zhongan, ZENG Fabin, FENG Xue, et al Dynamic model and influencing factors of dust pollution after blasting in high altitude tunnel[J]. Journal of China Coal Society, 2023, 48 (1): 263- 278
[23]   张国梁, 蒋仲安, 王睿 高海拔隧道出渣过程CO分布分析及需风量研究[J]. 湖南大学学报: 自然科学版, 2021, 48 (12): 174- 184
ZHANG Guoliang, JIANG Zhongan, WANG Rui Analysis of CO distribution and air demand during slagging in high altitude tunnel[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (12): 174- 184
[24]   孙三祥, 王文, 李国良, 等 高海拔隧道施工出碴车二次扬尘扩散规律[J]. 中国铁道科学, 2022, 43 (4): 53- 63
SUN Sanxiang, WANG Wen, LI Guoliang, et al Diffusion law of secondary dust caused by ballast truck in high altitude tunnel construction[J]. China Railway Science, 2022, 43 (4): 53- 63
[25]   赵以蕙. 矿井通风与空气调节[M]. 徐州: 中国矿业大学出版社, 1990.
[1] Guo-qing HE,Yi-tian TANG. Influence of exhaust wind cowls on wind driven ventilation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 591-597.
[2] Li-qun MA,Yu-long ZHAO,Yun-tong ZHAO,Shi-xue WANG. Experimental study of ventilated building integrated photovoltaic/ thermal system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2168-2174.
[3] Guo-qing HE,Wen-jie ZHAO,Liang WANG. Ventilation and heat transfer modeling in urban utility tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1419-1425.
[4] Ya-wen NIU,Cai-you ZHAO,Qiang YI,Duo-jia SHI,Jun-yuan ZHENG,Rong CHEN. Omnidirectional ventilation railway sound barrier capable of realizing wide frequency sound insulation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1048-1055.
[5] Qing-long MENG,Xiao-xiao REN,Wen-qiang WANG,Yang LI,Cheng-yan XIONG. HVAC demand response strategy experiment and simulation considering active energy storage[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1175-1184.
[6] Guo-qing HE,Da LV. Enhancing solar chimney ventilation efficiency by insertion of transparent panel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2260-2266.
[7] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[8] Wei-wu WANG,Fei-nan LI,Di WANG,Qin WANG. Urban ventilation corridor construction based on ventilation potential and quantitative analysis of wind characteristics[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 470-481.
[9] ZHANG Mei, PENG Xing-xing. Fine registration with adaptive distance function and iterative closest surface[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1920-1927.
[10] TAN Yong, KANG Zhi jun, WEI Bin, DENG Gang. Case study on deep excavation for metro ventilation shaft in Shanghai soft clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1048-1055.
[11] HE Fang xiang, ZHAN Shu lin, QIAN Xiao qian, LAI Jun ying. Numerical simulation on insulation of flat roof ventilation layer[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2397-2402.
[12] CHEN Yong, WANG Xu, SUN Bing-nan, LI Qing-xiang, CHEN Shui-fu. Wind tunnel experimental study on single room ventilation
affected by miscellaneous factors
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 658-664.
[13] LIU Shu-Yu, CHEN Ji-Huang. Urban ventilation channel planning method based on local circulation: a case study of Stuttgart, Germany[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1985-1991.
[14] SHU Wei, WANG Zhu, TIAN Die-Wei, et al. Field study of indoor environment during summer and analysis of construction style of residential buildings in hot summer and cold winter zone——a case study in Huzhou[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1526-1531.