Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (11): 2277-2284    DOI: 10.3785/j.issn.1008-973X.2023.11.015
    
Solidification of evaporated mother liquor of domestic landfill leachate
Quan-xiang FENG1,2,3(),Yi-min FANG4,Qin LI5,Run-qin HAO6,Fa-guang LENG1,2,3,Xiao-xuan DENG1,2,3,*()
1. China Academy of Building Research Co. Ltd, Beijing 100013, China
2. State Key Laboratory of Building Safety and Environment, Beijing 100013, China
3. National Engineering Research Center of Building Technology, Beijing 100013, China
4. Xiamen Jiarong Technology Co. Ltd, Xiamen 361112, China
5. Tianjin High Energy Time Water Treatment Technology Co. Ltd, Tianjin 300041, China
6. Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
Download: HTML     PDF(1216KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cement, cement+lime and self-made hydraulic binder were used to solidify the evaporated mother liquor of a project respectively, in order to solve the problem of lack of suitable cementing materials for solidification when disposing the evaporated mother liquor of domestic landfill leachate. Results showed that after the evaporated mother liquor was solidified, the indicators such as chemical oxygen demand, mass concentration of ammonia nitrogen, mass concentration of grease and conductivity decreased significantly, and the mass concentrated limit of heavy metal ions also met the landfill requirements of domestic waste landfill. However, the evaporated mother liquor was solidified with cement and cement+lime, leading to a long setting time and low strength, which couldnot meet the requirement of transporting slurry to landfill in time. And after the self-made hydraulic binder was used, the slurry process and strength index were significantly improved, meeting the requirements of rapid transition. Comprehensive analysis shows that the self-made hydraulic binder effectively eliminates the absorption of Ca2+ by the evaporated mother liquor under the synergistic effect of calcium bentonite and additives, ensuring that sufficient ettringite and calcium silicate hydrate are generated in the curing system and can exist stably, thus ensuring the rapid setting and strength stability of the solidified evaporated mother liquor.



Key wordsdomestic landfill leachate      evaporated mother liquor      adsorption      compressive strength      solidification     
Received: 14 November 2022      Published: 11 December 2023
CLC:  X 703  
Fund:  中国建筑科学研究院有限公司青年科研基金资助项目(20210122331030035)
Corresponding Authors: Xiao-xuan DENG     E-mail: 1401782440@qq.com;732068011@qq.com
Cite this article:

Quan-xiang FENG,Yi-min FANG,Qin LI,Run-qin HAO,Fa-guang LENG,Xiao-xuan DENG. Solidification of evaporated mother liquor of domestic landfill leachate. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2277-2284.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.11.015     OR     https://www.zjujournals.com/eng/Y2023/V57/I11/2277


生活垃圾渗滤液蒸发母液固化

为了解决处置生活垃圾渗滤液蒸发母液时缺少适合的固化用胶凝材料的问题,以水泥、水泥+石灰和自配固化剂分别对某项目蒸发母液进行固化试验. 结果表明,蒸发母液固化后化学需氧量、氨氮质量浓度、油脂质量浓度和电导率等指标下降显著,重金属离子质量浓度限值也满足生活垃圾填埋场填埋要求. 水泥和水泥+石灰固化蒸发母液凝结时间长,强度低,无法满足浆体及时转场填埋的要求,而在采用自配固化剂后,浆体工艺和强度指标提升明显,符合快速转场的要求. 综合分析可知,固化剂在钙基膨润土和添加剂的协同作用下有效消除了蒸发母液对Ca2+的吸附,确保固化体系中生成了足量的钙矾石和水化硅酸钙并且都能稳定存在,保证了固化蒸发母液的快速凝结和强度稳定.


关键词: 生活垃圾渗滤液,  蒸发母液,  吸附,  抗压强度,  固化 
化学成分 wB/% 化学成分 wB/%
SiO2 2~4 CaO 21~25
Al2O3 24~28 MgO 1~2
Fe2O3 3~6 SO3 30~34
其他 3~5
Tab.1 Main chemical components of additives
试样 固化蒸发母液
胶凝材料类别
φ1/% t/h φ2/(103 mL·m?3) f/MPa
3 d 7 d 28 d
1# 水泥 100 >72 1.280 无强度 无强度 无强度
2# 水泥+石灰 100 65 1.024 0.09 0.13 0.13
3# 固化剂 100 22 0 0.39 1.52 4.35
Tab.2 Comparison of sample process index and compressive strength of different samples
试样 pH COD/
(mg·L?1)
ρ(NH4+-N)/
(mg·L?1)
σ/
(μS·cm?1
ρR/
(mg·L?1)
蒸发母液 4.10 8.88×104 2.18×104 4.84×105 9.12
1# 10.40 4.93×103 15.90 4.03×104 0.88
2# 12.20 5.90×103 5.74 3.03×104 1.14
3# 6.00 6.20×103 15.00 3.61×104 0.10
Tab.3 Variation of water quality indexes before and after solidification of evaporated mother liquor
重金属 ρ0/(mg·L?11) ρ/(mg·L?1
蒸发母液 1# 2# 3#
1)注:《生活垃圾填埋场污染控制标准》(GB 16889—2008)规定.
0.05 0.00076 0.00089 0.00055 0.00088
40.00 0.19000 0.07210 0.02440 0.04360
100.00 1.16000 0.02230 0.07640 0.43500
0.25 <0.10000 <0.10000 <0.10000 <0.10000
0.15 0.05660 <0.05000 <0.05000 <0.05000
0.02 <0.00800 <0.00800 <0.00800 <0.00800
25.00 0.04580 0.69700 0.57200 0.55700
0.50 0.75600 0.03260 0.02140 0.11400
0.30 2.10000 0.00790 0.00310 0.00280
总铬 4.50 0.91000 0.15200 0.08370 0.16800
六价铬 1.50 0.18900 0.11300 0.01200 0.01800
0.10 0.04360 0.00450 0.00300 0.00290
Tab.4 Comparison of heavy metal mass concentration before and after solidification of evaporated mother liquor
Fig.1 XRD patterns of samples after curing
Fig.2 Diffraction intensity comparison of main characteristic peak of AFt (2θ=9.1°)
Fig.3 DSC-TG test chart of cured samples
Fig.4 SEM images of cured samples
[1]   ZHOU H, MENG A H, LONG Y Q, et al An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value[J]. Renewable and Sustainable Energy Reviews, 2014, 36 (30): 107- 122
[2]   LI Y, JIN Y, LI J, et al Current situation and development of kitchen waste treatment in China[J]. Procedia Environmental Sciences, 2016, 31: 40- 49
doi: 10.1016/j.proenv.2016.02.006
[3]   鲁波 城市生活厨余垃圾渗滤液处理处置研究现状与发展趋势[J]. 皮革制作与环保科技, 2021, 2 (15): 98- 99
LU Bo Research status and development trend of urban kitchen waste leachate treatment and disposal[J]. Leather Manufacture and Environmental Technology, 2021, 2 (15): 98- 99
[4]   查大鹏 新时期垃圾渗滤液浓缩液处理技术研究[J]. 工程技术研究, 2019, 45 (16): 245- 246
ZHA Da-peng Research on treatment technology of landfill leachate concentrate in the new period[J]. Engineering and Technological Research, 2019, 45 (16): 245- 246
doi: 10.3969/j.issn.1671-3818.2019.16.119
[5]   吴太军, 文永林 生活垃圾焚烧厂渗滤液膜浓缩液处理工艺研究进展[J]. 黑龙江环境通报, 2018, 42 (3): 62- 65
WU Tai-jun, WEN Yong-lin Research progress in treatment technology of leachate membrane concentrate for domestic waste incineration plant[J]. Heilongjiang Environmental Journal, 2018, 42 (3): 62- 65
[6]   陈雷, 贺磊, 吴立群, 等 垃圾渗滤液的处理现状及发展方向[J]. 环境工程, 2016, 34 (Suppl.1): 295- 298
CHEN Lei, HE Lei, WU Li-qun, et al Status and development direction of landfill leachate treatment[J]. Environmental Engineering, 2016, 34 (Suppl.1): 295- 298
[7]   张其其. 垃圾渗滤液膜滤浓缩液Fenton预处理-回灌技术研究[D]. 杭州: 浙江大学, 2014.
ZHANG Qi-qi. Research on pretreatment by Fenton-reinjection into the landfill of concentrated leachate[D]. Hangzhou: Zhejiang University, 2014.
[8]   程振杰. 蒸发法处理垃圾渗滤液试验研究[D]. 北京: 北京工业大学, 2013.
CHENG Zhen-jie. Experimental study on landill leachate treatment by evaporation method[D]. Beijing: Beijing University of Technology, 2013.
[9]   王心月. 浸没燃烧蒸发对渗滤液有机物特性及镉络合潜力影响研究[D]. 北京: 清华大学, 2017.
WANG Xin-yue. Influence of submerged combustion evaporation on characteristics and binding potential for Cd of leachate organic matter[D]. Beijing: Tsinghua University, 2017.
[10]   WANG Z, LI J B, TAN W H, et al Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis[J]. Separation and Purification Technology, 2019, 208: 3- 11
[11]   王娟, 杨再福 Fenton氧化在废水处理中的应用[J]. 环境科学与技术, 2020, 28 (1): 59- 63
WANG Juan, YANG Zai-fu Application of Fenton oxidation technology in wastewater treatment[J]. Environmental Science and Technology, 2020, 28 (1): 59- 63
[12]   LIU X J, NOVAK J T, HE Z Synergistically coupling membrane electrochemical reactor with Fenton process to enhance landfill leachate treatment[J]. Chemosphere, 2020, 247: 1- 8
[13]   中华人民共和国环境保护部和国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准(征求意见稿)[EB/OL]. (2022-02-22). https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202203/t20220301_970201.html.
[14]   刘宇程, 祝梦, 陈明燕, 等 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34 (4): 07003
LIU Yu-cheng, ZHU Meng, CHEN Ming-yan, et al Research progress of graphene oxide / metal organic frameworks composite membrane in organic wastewater treatment[J]. Materials Reports, 2020, 34 (4): 07003
[15]   孙少龙, 陈勃言, 刘军 Fenton工艺处理垃圾渗滤液效果及经济性综述[J]. 环境卫生工程, 2020, 28 (1): 59- 63
SUN Shao-long, CHEN Bo-yan, LIU Jun Review on effect and economy of fenton process applied on leachate treatment[J]. Environmental Sanitation Engineering, 2020, 28 (1): 59- 63
[16]   邹帅文, 黄春林, 王羽旸 垃圾渗滤液膜浓缩液全量化处理探讨与实例[J]. 广州化工, 2021, 49 (24): 90- 92
ZOU Shuai-wen, HUANG Chun-lin, WANG Yu-yang Discussion and example of full quantitative disposal of landfill leachate membrance concentrate[J]. Guangzhou Chemical Industry, 2021, 49 (24): 90- 92
[17]   丁晶, 关淑妍, 赵庆良, 等 垃圾渗滤液膜滤浓缩液处理技术研究与应用进展[J]. 哈尔滨工业大学学报, 2021, 53 (11): 1- 13
DING Jing, GUAN Shu-yan, ZHAO Qing-liang, et al Research and application status of treatment methods of landfill leachate membrane concentrate[J]. Journal of Harbin Institute of Technology, 2021, 53 (11): 1- 13
[18]   谢炜炫, 王舒东, 郝润琴, 等 生活垃圾渗滤液膜浓缩液固化初探[J]. 环境科学与技术, 2020, 43 (9): 47- 52
XIE Wei-xuan, WANG Shu-dong, HAO Run-qin, et al Preliminary study on solidification of membrane retentate of landfill leachate[J]. Environmental Science and Technology, 2020, 43 (9): 47- 52
[19]   李月中, 乐晨, 王庆国, 等 蒸发-固化法处理垃圾渗滤液反渗透浓缩液的研究[J]. 环境科技, 2015, 28 (2): 10- 12
LI Yue-zhong, LE Chen, WANG Qing-guo, et al Study on thetreatment of concentrated water from reverse osmosis of bio-treated landfill leachate by evaporation and solidification process[J]. Environmental Science and Technology, 2015, 28 (2): 10- 12
[20]   国家质量监督检验检疫总局和中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法标准: GB/T 1346—2011 [S]. 北京: 中国标准出版社, 2011.
[21]   中华人民共和国环境保护部和国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准: GB 16889—2008 [S]. 北京: 中国环境科学出版社, 2008.
[22]   国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液: HJ/T 300—2007 [S]. 北京: 中国环境科学出版社, 2007.
[23]   廉慧珍. 建筑材料物相研究基础[M]. 北京: 清华大学出版社, 1996: 66.
[24]   王福卫, 史镕玮, 刘石艳, 等 广西钙基膨润土湿法提纯研究[J]. 化工矿物与加工, 2019, (10): 36- 39
WANG Fu-wei, SHI Rong-wei, LIU Shi-yan, et al Study on wet purification of Guangxi calcium bentonite[J]. Industrial Minerals and Processing, 2019, (10): 36- 39
[25]   陈文怡, 涂浩 TG-DSC技术在水泥研究中的应用[J]. 分析仪器, 2012, (2): 55- 58
CHEN Wen-yi, TU Hao Application of TG-DSC technique in the study of cement[J]. Analytical Instrumentation, 2012, (2): 55- 58
doi: 10.3969/j.issn.1001-232X.2012.02.014
[26]   齐添, 李水江, 张金荣, 等 含腐殖酸水泥土的强度特性研究[J]. 广州建筑, 2019, 47 (2): 21- 24
QI Tian, LI Shui-jiang, ZHANG Jin-rong, et al Study on strength characteristics of cement-soil containing humus[J]. Guangzhou Architecture, 2019, 47 (2): 21- 24
[27]   邓晓轩, 纪宪坤, 田均兵, 等 矿渣在尾砂胶结充填中的应用与研究进展[J]. 材料导报, 2016, 30 (5): 95- 100
DENG Xiao-xuan, JI Xian-kun, TIAN Jun-bing, et al Application and research progress of slag in cemented filled of tailings[J]. Materials Reports, 2016, 30 (5): 95- 100
[28]   李雪刚. 杭州海相软土的固化及其理论研究[D]. 杭州: 浙江大学, 2013.
LI Xue-gang. Theoretical study on stabilization of marine soft clay in Hangzhou[D]. Hangzhou: Zhejiang University, 2013.
[29]   邵玉芳. 含腐殖酸软土的加固研究[D]. 杭州: 浙江大学, 2006.
SHAO Yu-fang. Study on humus-containing soil stabilization[D]. Hangzhou: Zhejiang University, 2006.
[30]   CHIRDCHANIN MODMOLTIN, 陆江, KATSUTADA ONITSUKA 腐殖酸与盐分浓度对石灰加固土有明黏土的影响以及微观结构研究[J]. 岩土工程学报, 2004, 26 (2): 281- 286
CHIRDCHANIN M, LU J, KATSUTADA O Influence of humic acid and salt concentration on lime-stabilized ariake clays and microstructure research[J]. Chinese Journal of Geotechnical Engineering, 2004, 26 (2): 281- 286
[31]   赵刘义. 基于废油脂调质的剩余污泥厌氧酸化效能及脂肪酸累积特性研究[D], 郑州: 郑州大学, 2021.
ZHAO Liu-yi. Study on anaerobic acidification efficiency and fatty acid accumulation characteristics based on waste activated sludge conditioning with waste cooking oils[D]. Zhengzhou: Zhengzhou University, 2021.
[32]   杨华明, 张华, 张向超, 等 Ca-基膨润土制备重金属废水吸附剂的研究[J]. 金属矿山, 2004, (9): 57- 59
YANG Hua-ming, ZHANG Hua, ZHANG Xiang-chao, et al Investigation on preparation of Ca-bentonite sorbent for heavy metals wastewater treatment[J]. Metal Mine, 2004, (9): 57- 59
[33]   兰兴阳. 硫铝酸盐水泥固化土性能及机理分析研究[D]. 重庆: 重庆大学, 2019.
LAN Xing-yang. Research on properties and mechanism of sulphoaluminate cement solidified soil [D]. Chongqing: Chongqing University, 2019.
[34]   刘子铭. 基于钙矾石填充的有机质土加固试验研究[D]. 南京: 东南大学, 2017.
LIU Zi-ming. Experimental study on reinforcing the organic soil based on the filling function of ettringite[D]. Nanjing: Southeast University, 2019.
[1] Li-hua LI,Zi-jian LI,Heng-lin XIAO,Shao-ping HUANG,Yi-ming LIU. Engineering characteristics and mechanism of rice husk ash-ground granulated blast slag cured expansive soil[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1736-1745.
[2] Yu-ke WANG,Tian-cai CAO,Ying-bin SONG,Jing-gan SHAO,Xiang YU,Bo-wen DONG. Experimental study on solidification parameters of Yellow River silt based on bacteria-induced and enzyme-induced methods[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1100-1110.
[3] Yi-long LI,Zhen GUO,Qiang XU,Yu-jie LI. Experimental research on wet-dry cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1740-1749.
[4] Meng GUO,Yu-ru ZHANG,Xing WEI,Wen-jing WANG. Graphene modification in amine-functionalized SBA-15 and its CO2 adsorption capacity[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1588-1596.
[5] Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.
[6] Lei LIU,Quan-wen PAN,Bo WANG,Qin-yu ZHAO,Long JIANG,Yuan-xin HE,Wei-ming ZHOU,Zhi-hua GAN. Progress of hydrogen adsorbents in vacuum jacket of liquid hydrogen vessels[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2194-2203.
[7] Wei TIAN,Fang-fang GAO,Li HE. Variation of mechanical property and meso structure of MWCNTs concrete exposed to high temperature[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2280-2289.
[8] En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.
[9] Xuan HE,Qi-xing ZHOU. Research progress of new petroleum adsorbents based on chitosan aerogels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1368-1380.
[10] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[11] Jian-feng ZHU,Qiu-shui TUO,Wen-ni DENG,Chun-yi RAO,Hao-xu LIU. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2168-2174.
[12] LUO Hua, CHEN Zu-yu, GONG Guo-fang, ZHAO Yu, JING Liu-jie, WANG Chao. Advance rate of TBM based on field boring data[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1566-1574.
[13] LONG Bi-bo, YE Bin-hui, LIU Qing-lin, LUO Ya-ting, SHI Ji-yan. Experiment of application of Penicillium oxalicum SL2 in Cr(VI) removal from high-salinity electroplating wastewater[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1616-1623.
[14] SONG Ying-bin, XU Jin-xia, JIANG Lin-hua, TAN Qi-ping, MEI You-jing. Anti-corrosion performance of NO3-/NO2- intercalation of MgAl-LDHs in simulated concrete pore solution[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2397-2405.
[15] YANG Jin-yao, FANG Meng-xiang, CEN Qi-gang, WANG Tao, HE Hui. Simulation of capturing carbon dioxide from flue gas by activated carbon[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2142-2149.