| 计算机技术、控制工程 |
|
|
|
|
| 融合多尺度分辨率和带状特征的遥感道路提取 |
李国燕( ),李鹏辉,刘榕*( ),梅玉鹏,张明辉 |
| 天津城建大学 计算机与信息工程学院,天津 300384 |
|
| Remote sensing road extraction by fusing multi-scale resolution and strip feature |
Guoyan LI( ),Penghui LI,Rong LIU*( ),Yupeng MEI,Minghui ZHANG |
| College of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China |
引用本文:
李国燕,李鹏辉,刘榕,梅玉鹏,张明辉. 融合多尺度分辨率和带状特征的遥感道路提取[J]. 浙江大学学报(工学版), 2026, 60(3): 585-593.
Guoyan LI,Penghui LI,Rong LIU,Yupeng MEI,Minghui ZHANG. Remote sensing road extraction by fusing multi-scale resolution and strip feature. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 585-593.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.014
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/585
|
| 1 |
顾剑华, 孙鑫, 李红 基于地理国情普查高分辨率遥感影像的道路提取方法研究[J]. 测绘与空间地理信息, 2014, 37 (6): 145- 146 GU Jianhua, SUN Xin, LI Hong Study on the extraction method of geographical conditions survey of high resolution remote sensing image based road[J]. Geomatics and Spatial Information Technology, 2014, 37 (6): 145- 146
|
| 2 |
SHIN H C, ROTH H R, GAO M, et al Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35 (5): 1285- 1298
doi: 10.1109/TMI.2016.2528162
|
| 3 |
ZOU S, XIONG F, LUO H, et al. AF-Net: all-scale feature fusion network for road extraction from remote sensing images [C]// Digital Image Computing. Techniques and Applications. Saudi Arabia: IEEE, 2021: 66-73.
|
| 4 |
LU X, ZHONG Y, ZHENG Z, et al GAMSNet: globally aware road detection network with multi-scale residual learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 340- 352
doi: 10.1016/j.isprsjprs.2021.03.008
|
| 5 |
ZHANG Z, LIU Q, WANG Y Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 749- 753
doi: 10.1109/LGRS.2018.2802944
|
| 6 |
XU Z, SUN Y, LIU M iCurb: imitation learning-based detection of road curbs using aerial images for autonomous driving[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 1097- 1104
doi: 10.1109/LRA.2021.3056344
|
| 7 |
LIU Y, XIAO Y. Remote sensing object detection method based on attention mechanism and multi-scale feature fusion [C]// 41st Chinese Control Conference. Hefei: IEEE, 2022: 7155-7160.
|
| 8 |
CHEN S B, JI Y X, TANG J, et al DBRANet: road extraction by dual-branch encoder and regional attention decoder[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3002905
|
| 9 |
XU Y, CHEN H, DU C, et al MSACon: mining spatial attention-based contextual information for road extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5604317
|
| 10 |
WANG Y, SEO J, JEON T NL-LinkNet: toward lighter but more accurate road extraction with nonlocal operations[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3000105
|
| 11 |
QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation [C]// IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6047-6056.
|
| 12 |
WANG Y, TONG L, LUO S, et al A multiscale and multi-direction feature fusion network for road detection from satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5615718
|
| 13 |
YONG C, WEI W, REN Z, et al Multi-scale feature fusion and transformer network for urban green space segmentation from high-resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103514
doi: 10.1016/j.jag.2023.103514
|
| 14 |
HU J, SHEN L, SUN G, et al. Squeeze-and-Excitation networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
| 15 |
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]// Advances in Neural Information Processing Systems. Montreal: [s. n. ], 2015: 2017-2025.
|
| 16 |
WANG J, WANG R, LIU Y, et al Transferable contextual network for rural road extraction from UAV-based remote sensing images[J]. Sensors, 2025, 25 (5): 1394
doi: 10.3390/s25051394
|
| 17 |
GUI L, GU X, HUANG F, et al Road extraction from remote sensing images using a skip-connected parallel CNN-transformer encoder-decoder model[J]. Applied Sciences, 2025, 15 (3): 1427
doi: 10.3390/app15031427
|
| 18 |
TONG Z, LI Y, ZHANG J, et al MSFANet: multiscale fusion attention network for road segmentation of multispectral remote sensing data[J]. Remote Sensing, 2023, 15 (8): 1978
doi: 10.3390/rs15081978
|
| 19 |
WANG X, QIN C, BAI M, et al CAFormer: a connectivity-aware vision transformer for road extraction from remote sensing images[J]. The Visual Computer, 2025, 41 (10): 7965- 7981
doi: 10.1007/s00371-025-03849-1
|
| 20 |
VIDIVELLI S, PADMAKUMARI P, PARTHIBAN C, et al Optimising deep learning models for ophthalmological disorder classification[J]. Scientific Reports, 2025, 15: 3115
doi: 10.1038/s41598-024-75867-3
|
| 21 |
ADEYEMI S Defect detection in manufacturing: an integrated deep learning approach[J]. Journal of Computer and Communications, 2024, 12 (10): 153- 176
doi: 10.4236/jcc.2024.1210011
|
| 22 |
PENG J, WANG Y, PAN Z Weakly supervised instance segmentation via class double-activation maps and boundary localization[J]. Signal Processing: Image Communication, 2024, 127: 117150
doi: 10.1016/j.image.2024.117150
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|