Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 585-593    DOI: 10.3785/j.issn.1008-973X.2026.03.014
计算机技术、控制工程     
融合多尺度分辨率和带状特征的遥感道路提取
李国燕(),李鹏辉,刘榕*(),梅玉鹏,张明辉
天津城建大学 计算机与信息工程学院,天津 300384
Remote sensing road extraction by fusing multi-scale resolution and strip feature
Guoyan LI(),Penghui LI,Rong LIU*(),Yupeng MEI,Minghui ZHANG
College of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
 全文: PDF(2854 KB)   HTML
摘要:

针对现有深度学习方法在提取遥感影像道路长距离拓扑特征时存在连通性断裂和细节缺失的问题,提出融合多尺度分辨率和带状特征网络(MSRSF-Net). 该网络设计带状形态学注意力机制,强化细长道路的特征聚焦能力. 编码器集成通道-空间双注意力机制与多分辨率残差分支,实现跨尺度特征的协同提取. 解码器采用带状卷积与方形卷积的特征融合架构,提升道路提取的拓扑连贯性. 在Massachusetts、DeepGlobe、SpaceNet数据集上的实验表明,MSRSF-Net的IoU分别达到73.76%、68.57%、59.98%,APLS达到69.78%、60.27%、62.17%,与主流分割模型相比,道路连续性的保持能力有所提升.

关键词: 道路提取带状卷积多尺度特征融合注意力机制ResNet残差结构    
Abstract:

Multi-scale resolution and strip feature fusion network (MSRSF-Net) was proposed in order to address the issue of fragmentation and loss of fine details in extracting long-range topological road feature from remote sensing imagery. The network was designed with a strip-shaped attention mechanism in order to enhance the feature representation of elongated road. The encoder integrated dual channel-spatial attention mechanism with multi-resolution residual branch in order to achieve collaborative cross-scale feature extraction. The decoder adopted a feature fusion architecture combining strip and square convolution, improving the topological continuity of road extraction. The experimental results on the Massachusetts, DeepGlobe and SpaceNet datasets demonstrated that MSRSF-Net achieved IoU scores of 73.76%, 68.57% and 59.98%, with APLS metrics of 69.78%, 60.27% and 62.17%, respectively, demonstrating superior performance in preserving road connectivity compared with mainstream segmentation models.

Key words: road extraction    strip-shaped convolution    multi-scale feature fusion    attention mechanism    ResNet residual structure
收稿日期: 2025-04-06 出版日期: 2026-02-04
:  TP 751  
基金资助: 天津市科技特派员资助项目(24YDTPJC00410).
通讯作者: 刘榕     E-mail: ligy@tcu.edu.cn;lr@tcu.edu.cn
作者简介: 李国燕(1984—),女,副教授,博士,从事下一代网络技术、人工智能的研究. orcid.org/0000-0003-3224-2824. E-mail:ligy@tcu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李国燕
李鹏辉
刘榕
梅玉鹏
张明辉

引用本文:

李国燕,李鹏辉,刘榕,梅玉鹏,张明辉. 融合多尺度分辨率和带状特征的遥感道路提取[J]. 浙江大学学报(工学版), 2026, 60(3): 585-593.

Guoyan LI,Penghui LI,Rong LIU,Yupeng MEI,Minghui ZHANG. Remote sensing road extraction by fusing multi-scale resolution and strip feature. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 585-593.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.014        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/585

图 1  多尺度分辨率及带状特征融合的 U 型网络
图 2  多向带状注意力机制
图 3  多分辨率特征融合编码器
图 4  多向带状特征还原解码器
实验编号BaselineMDSAMRFFMDSRP/%R/%F1/%IoU/%
170.1766.5368.3151.86
276.2074.5175.3460.45
377.7277.8377.7763.63
478.6777.6978.1864.18
578.9277.8778.3964.46
表 1  在DeepGlobe数据集上开展的不同模块消融实验
实验编号BaselineMDSAMRFFMDSRP/%R/%F1/%IoU/%
167.2461.5564.2647.34
271.8965.5268.5452.14
374.7068.2871.3455.56
478.8666.8772.3756.70
576.5869.1472.6857.11
表 2  在Massachusetts数据集上开展的不同模块消融实验
实验编号BaselineMDSAMRFFMDSRP/%R/%F1/%IoU/%
165.6868.5167.0550.44
269.9371.5870.7254.70
372.1675.2873.6958.34
475.4873.1274.2859.09
573.9676.0374.9859.98
表 3  在SpaceNet数据集上开展的不同模块消融实验
图 5  MSRSF-Net 与其他几种先进的模型可视化结果对比
方法P/%R/%F1/%IoU/%APLS/%
Unet++(2018)76.4274.4475.4160.5364.50
DeepLabV3+(2018)79.6085.9281.4370.2167.96
SGCNet(2022)72.7866.9869.7653.5757.39
TransRoadNet(2022)81.0184.1382.5370.2067.00
CARNet(2023)81.0886.2583.5871.7668.69
RoadFormer(2024)83.8685.3684.6173.3869.62
StripUnet(2024)82.8285.3284.0572.0468.46
MSRSF-Net(本文模型)83.9285.8584.8773.7669.78
表 4  在DeepGlobe数据集上所提模型与其他几种先进的道路提取方法对比
方法P/%R/%F1/%IoU/%APLS/%
Unet++(2018)78.7960.6968.6152.0859.25
DeepLabV3+(2018)75.8876.3475.3661.2955.11
SGCNet(2022)74.0563.7668.5252.1249.53
TransRoadNet(2022)78.7581.2479.9866.6756.67
CARNet(2023)79.0281.7380.3567.2156.80
RoadFormer(2024)79.9581.7980.8768.4657.16
StripUnet(2024)80.8181.5281.1668.1859.81
MSRSF-Net(本文模型)80.8082.1481.4668.5760.27
表 5  在Massachusetts数据集上所提模型与其他几种先进的道路提取方法对比
方法P/%R/%F1/%IoU/%APLS/%
Unet++(2018)73.3066.9170.0153.8559.04
DeepLabV3+(2018)72.8572.5572.7057.1061.27
SGCNet(2022)73.9668.7571.2755.5660.73
TransRoadNet(2022)74.6374.3670.8354.8461.29
CARNet(2023)74.6873.4472.0557.3161.38
RoadFormer(2024)74.3575.7374.8858.9161.45
StripUnet(2024)75.0774.4874.0658.8262.09
MSRSF-Net(本文模型)74.9676.0374.7759.9862.17
表 6  在SpaceNet数据集上所提模型与其他几种先进的道路提取方法对比
方法Np /106FLOPs/109v/(帧·s?1)t/ms
DeepLabV3+(2018)54.7182.7315.7466.67
RoadFormer(2024)31.48174.4711.7689.39
StripUnet(2024)29.5775.7818.4637.41
MSRSF-Net(本文模型)34.6160.2016.6735.12
表 7  模型复杂度的分析
1 顾剑华, 孙鑫, 李红 基于地理国情普查高分辨率遥感影像的道路提取方法研究[J]. 测绘与空间地理信息, 2014, 37 (6): 145- 146
GU Jianhua, SUN Xin, LI Hong Study on the extraction method of geographical conditions survey of high resolution remote sensing image based road[J]. Geomatics and Spatial Information Technology, 2014, 37 (6): 145- 146
2 SHIN H C, ROTH H R, GAO M, et al Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35 (5): 1285- 1298
doi: 10.1109/TMI.2016.2528162
3 ZOU S, XIONG F, LUO H, et al. AF-Net: all-scale feature fusion network for road extraction from remote sensing images [C]// Digital Image Computing. Techniques and Applications. Saudi Arabia: IEEE, 2021: 66-73.
4 LU X, ZHONG Y, ZHENG Z, et al GAMSNet: globally aware road detection network with multi-scale residual learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 340- 352
doi: 10.1016/j.isprsjprs.2021.03.008
5 ZHANG Z, LIU Q, WANG Y Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 749- 753
doi: 10.1109/LGRS.2018.2802944
6 XU Z, SUN Y, LIU M iCurb: imitation learning-based detection of road curbs using aerial images for autonomous driving[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 1097- 1104
doi: 10.1109/LRA.2021.3056344
7 LIU Y, XIAO Y. Remote sensing object detection method based on attention mechanism and multi-scale feature fusion [C]// 41st Chinese Control Conference. Hefei: IEEE, 2022: 7155-7160.
8 CHEN S B, JI Y X, TANG J, et al DBRANet: road extraction by dual-branch encoder and regional attention decoder[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3002905
9 XU Y, CHEN H, DU C, et al MSACon: mining spatial attention-based contextual information for road extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5604317
10 WANG Y, SEO J, JEON T NL-LinkNet: toward lighter but more accurate road extraction with nonlocal operations[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3000105
11 QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation [C]// IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6047-6056.
12 WANG Y, TONG L, LUO S, et al A multiscale and multi-direction feature fusion network for road detection from satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5615718
13 YONG C, WEI W, REN Z, et al Multi-scale feature fusion and transformer network for urban green space segmentation from high-resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103514
doi: 10.1016/j.jag.2023.103514
14 HU J, SHEN L, SUN G, et al. Squeeze-and-Excitation networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
15 JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]// Advances in Neural Information Processing Systems. Montreal: [s. n. ], 2015: 2017-2025.
16 WANG J, WANG R, LIU Y, et al Transferable contextual network for rural road extraction from UAV-based remote sensing images[J]. Sensors, 2025, 25 (5): 1394
doi: 10.3390/s25051394
17 GUI L, GU X, HUANG F, et al Road extraction from remote sensing images using a skip-connected parallel CNN-transformer encoder-decoder model[J]. Applied Sciences, 2025, 15 (3): 1427
doi: 10.3390/app15031427
18 TONG Z, LI Y, ZHANG J, et al MSFANet: multiscale fusion attention network for road segmentation of multispectral remote sensing data[J]. Remote Sensing, 2023, 15 (8): 1978
doi: 10.3390/rs15081978
19 WANG X, QIN C, BAI M, et al CAFormer: a connectivity-aware vision transformer for road extraction from remote sensing images[J]. The Visual Computer, 2025, 41 (10): 7965- 7981
doi: 10.1007/s00371-025-03849-1
20 VIDIVELLI S, PADMAKUMARI P, PARTHIBAN C, et al Optimising deep learning models for ophthalmological disorder classification[J]. Scientific Reports, 2025, 15: 3115
doi: 10.1038/s41598-024-75867-3
21 ADEYEMI S Defect detection in manufacturing: an integrated deep learning approach[J]. Journal of Computer and Communications, 2024, 12 (10): 153- 176
doi: 10.4236/jcc.2024.1210011
22 PENG J, WANG Y, PAN Z Weakly supervised instance segmentation via class double-activation maps and boundary localization[J]. Signal Processing: Image Communication, 2024, 127: 117150
doi: 10.1016/j.image.2024.117150
[1] 陈文强,冯琳越,王东丹,顾玉磊,赵轩. 融合动态风险图与多变量注意力机制的车辆轨迹预测模型[J]. 浙江大学学报(工学版), 2026, 60(3): 455-467.
[2] 胡从裕,殷晨波,马伟,杨超,颜士宽. 基于改进CNN-LSTM的挖掘机作业对象识别[J]. 浙江大学学报(工学版), 2026, 60(3): 536-545.
[3] 李彬彬,张超,覃涛,陈昌盛,刘兴艳,杨靖. 面向光伏电站建设的移动端人体跌倒检测方法[J]. 浙江大学学报(工学版), 2026, 60(3): 546-555.
[4] 王爽,章熙泰,郭永存,孙守锁. 基于深度网络的可控混合式磁力耦合器退磁诊断[J]. 浙江大学学报(工学版), 2026, 60(2): 279-286.
[5] 李宪华,杜鹏飞,宋韬,邱洵,蔡钰. 基于多尺度滑窗注意力时序卷积网络的脑电信号分类[J]. 浙江大学学报(工学版), 2026, 60(2): 370-378.
[6] 杨明辉,宋牧原,付大喜,郭炎伟,卢贤锥,张文聪,郑伟龙. 基于多头自注意力-Bi-LSTM模型的盾构掘进引发的土体沉降预测[J]. 浙江大学学报(工学版), 2026, 60(2): 415-424.
[7] 周思瑶,夏楠,江佳鸿. 姿态引导的双分支换装行人重识别网络[J]. 浙江大学学报(工学版), 2026, 60(1): 71-80.
[8] 张学军,梁书滨,白万荣,张奉鹤,黄海燕,郭梅凤,陈卓. 基于异构图表征的源代码漏洞检测方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1644-1652.
[9] 林宜山,左景,卢树华. 基于多头自注意力机制与MLP-Interactor的多模态情感分析[J]. 浙江大学学报(工学版), 2025, 59(8): 1653-1661.
[10] 翟亚红,陈雅玲,徐龙艳,龚玉. 改进YOLOv8s的轻量级无人机航拍小目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1708-1717.
[11] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[12] 杨荣泰,邵玉斌,杜庆治. 基于结构感知的少样本知识补全[J]. 浙江大学学报(工学版), 2025, 59(7): 1394-1402.
[13] 杨宇豪,郭永存,李德永,王爽. 基于视觉信息的煤矸识别分割定位方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1421-1433.
[14] 王圣举,张赞. 基于加速扩散模型的缺失值插补算法[J]. 浙江大学学报(工学版), 2025, 59(7): 1471-1480.
[15] 蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.