Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 303-312    DOI: 10.3785/j.issn.1008-973X.2026.02.008
计算机技术与控制工程     
重构YOLOv11的无人机小目标检测算法
孟昱煜(),孔垂乐,火久元*(),武泽宇
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
UAV small target detection algorithm based on reconstruction of YOLOv11
Yuyu MENG(),Chuile KONG,Jiuyuan HUO*(),Zeyu WU
School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
 全文: PDF(3266 KB)   HTML
摘要:

无人机视角下目标偏小、背景复杂、场景包含多尺度信息,现有算法在小目标检测中特征提取不充分、检测效果不佳,为此提出面向多尺度复杂场景、无人机视角下基于重构YOLOv11的小目标检测算法DLSRF-Net. 提出自适应深度可分离感受野注意力卷积模块(DSRFAConv),提升模型对小目标感受野特征的提取能力并降低模型负载;设计多分支轻量化多尺度线性注意力机制,提升模型对小目标的关注度;设计RSCDI模块作为模型的上采样层和全连接层,解决特征信息丢失问题并抑制无用信息,提升模型的检测精度. 按照参数量和计算量将模型尺寸分为2类,并在VisDrone2021数据集上进行实验验证,结果表明,所提算法在2类模型尺寸下均取得了最优性能. 在DOTA和SSDD数据集上验证了所提算法的泛化能力.

关键词: 小目标检测复杂场景YOLOv11多尺度线性注意力RSCDI    
Abstract:

A small target detection algorithm (DLSRF-Net) for multi-scale complex scenarios from UAV viewpoint was proposed by reconstructing the YOLOv11, to address the insufficient feature extraction and poor detection performance of existing algorithms in small target detection under UAV viewpoint due to small target sizes, complex backgrounds, and multi-scale information in the scenarios. The adaptive depthwise separative receptive field attention convolution module (DWRFAConv) was proposed to improve the model’s ability to extract the receptive field features of small targets and reduce the model load. The multi-branch lightweight multi-scale linear attention mechanism was designed to enhance the model’s attention to small targets. The RSCDI module was designed as the upsampling layer and fully connected layer of the model to solve the problem of feature information loss, suppress the useless information, and improve the model’s detection accuracy. The model sizes were classified into two categories based on parameter count and computational complexity, and experimental validation was carried out on the VisDrone2021 dataset. The results showed that the proposed algorithm achieved the optimal performance under both model size categories, and the generalization ability of the proposed algorithm was verified on the DOTA and the SSDD datasets.

Key words: small target detection    complex scenario    YOLOv11    multi-scale linear attention    RSCDI
收稿日期: 2025-04-04 出版日期: 2026-02-03
CLC:  TP 391.4  
基金资助: 国家自然科学基金资助项目(62262038);甘肃省重点研发计划资助项目(25YFGA045).
通讯作者: 火久元     E-mail: 529267338@qq.com;huojy@mail.lzjtu.cn
作者简介: 孟昱煜(1975—),女,副教授,硕导,从事数据挖掘研究. orcid.org/0009-0003-1310-7755. E-mail:529267338@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孟昱煜
孔垂乐
火久元
武泽宇

引用本文:

孟昱煜,孔垂乐,火久元,武泽宇. 重构YOLOv11的无人机小目标检测算法[J]. 浙江大学学报(工学版), 2026, 60(2): 303-312.

Yuyu MENG,Chuile KONG,Jiuyuan HUO,Zeyu WU. UAV small target detection algorithm based on reconstruction of YOLOv11. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 303-312.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.008        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/303

图 1  重构YOLOv11的无人机小目标检测算法的整体结构
图 2  感受野注意力卷积动态提取感受野空间特征的整体流程
图 3  自适应深度可分离感受野注意力卷积模块结构
图 4  多分支轻量化多尺度线性注意力模块结构
图 5  深度可分离感受野多层次特征融合模块结构
模块P/%R/%mAP50/%mAP50-90/%Np/106FPS/(帧·s?1)FLOP/(109·s?1)
42.733.032.918.82.682.36.3
RFAConv44.533.533.619.72.661.46.7
MLA43.434.133.519.62.569.77.1
SDI45.433.934.320.23.374.412.8
DSRFAConv44.934.134.419.92.466.66.6
LMLA43.934.733.919.22.573.66.1
RSCDI46.135.635.421.22.677.89.7
DSRFAConv+LMLA45.436.235.120.92.580.16.9
DSRFAConv+RSCDI46.636.136.421.72.683.78.7
LMLA+RSCDI47.736.336.822.72.473.69.1
DSRFAConv+LMLA+RSCDI49.938.140.124.22.8109.811.9
表 1  所提模块在VisDrone数据集上的消融实验结果
模型尺寸算法P/%R/%mAP50/%mAP50-90/%Np/106FPS/(帧·s?1)FLOP/(109·s?1)
NDrone-YOLO46.535.636.121.33.079.412.4
YOLOv5n42.832.032.318.22.296.65.8
YOLOv6n39.831.230.317.54.297.811.8
YOLOv8n44.231.932.419.03.0101.58.1
YOLOv8-Ghostp244.032.332.618.81.666.87.3
YOLOv9t44.033.133.319.32.071.87.6
YOLOv10n43.032.432.518.72.770.28.2
YOLOv11n42.733.032.918.82.682.36.3
YOLOv12n41.731.430.917.82.546.76.0
DLSRF-Net49.938.140.124.22.8109.811.9
MYOLOv8s49.536.937.822.611.298.628.5
YOLOv9s50.038.739.423.47.236.726.7
YOLOv10s48.037.537.922.58.168.924.5
YOLOv11s48.237.737.922.79.479.621.3
YOLOv12s48.536.836.922.09.147.819.3
RT-DETR54.442.745.327.519.844.836.7
DLSRF-Net60.145.647.328.67.1103.125.5
表 2  VisDrone2021数据集上不同算法的性能对比实验结果
图 6  N类别下不同模型的mAP50和mAP50-90对比
图 7  M类别下不同模型的mAP50和mAP50-90对比
图 8  不同模型尺寸下所提模型与基准模型对VisDrone2021数据集中各类目标的检测精度对比
图 9  基准模型与所提模型的热图生成结果对比
数据集模型尺寸模型P/%R/%mAP50/%mAP50-90/%Np/106FPS/(帧·s?1)FLOP/(109·s?1)
DOTANYOLOv10n55.734.035.020.92.762.78.2
YOLOv11n64.635.838.322.92.577.16.3
YOLOv12n65.135.537.322.12.549.36.0
DLSRF-Net66.239.642.924.92.899.311.9
MYOLOv10s61.737.639.724.08.162.524.5
YOLOv11s69.539.343.326.59.470.421.3
YOLOv12s68.939.744.225.99.148.819.3
DLSRF-Net71.742.246.228.37.194.625.2
SSDDNYOLOv10n94.992.797.272.22.761.18.2
YOLOv11n95.993.498.172.22.675.26.3
YOLOv12n96.692.797.471.02.550.36.0
DLSRF-Net97.995.698.774.82.8101.711.9
MYOLOv10s94.294.998.174.18.162.424.5
YOLOv11s95.795.498.274.69.480.321.3
YOLOv12s97.194.398.374.29.149.819.3
DLSRF-Net98.196.798.974.67.199.625.5
表 3  模型在DOTA、SSDD数据集上的泛化实验结果
1 钟博, 王鹏飞, 王乙乔, 等 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报: 工学版, 2024, 58 (5): 879- 890
ZHONG Bo, WANG Pengfei, WANG Yiqiao, et al Survey of deep learning based EEG data analysis technology[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (5): 879- 890
2 刘亮. 高起点发展低空经济 [N]. 经济日报, 2025-03-30(7).
3 孙卫国, 吕人力, 李凌威, 等. 低空经济面临的机遇、挑战与城市空中交通规划展望 [J]. 城市交通, 2025, 23(2): 13–19.
SUN Weiguo, LYU Renli, LI Lingwei, et al. Opportunities and challenges for low-altitude economy and future prospects of urban air mobility planning [J]. Urban Transport of China, 2025, 23(2): 13–19.
4 GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
5 GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440–1448.
6 REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
7 LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21–37.
8 PULIPALUPULA M, PATLOLA S, NAYAKI M, et al. Object detection using you only look once (YOLO) algorithm in convolution neural network (CNN) [C]// Proceedings of the IEEE 8th International Conference for Convergence in Technology (I2CT). Lonavla: IEEE, 2023: 1–4.
9 宋耀莲, 王粲, 李大焱, 等 基于改进YOLOv5s的无人机小目标检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2417- 2426
SONG Yaolian, WANG Can, LI Dayan, et al UAV small target detection algorithm based on improved YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2417- 2426
10 韩俊, 袁小平, 王准, 等 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1224- 1233
HAN Jun, YUAN Xiaoping, WANG Zhun, et al UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1224- 1233
11 杨智能, 钟小勇, 李华耀, 等. 改进YOLOv8n的航拍小目标检测算法 [J]. 电光与控制, 2025, 32(7): 27–32.
YANG Zhineng, ZHONG Xiaoyong, LI Huayao, et al. Aerial small target detection based on improved YOLOv8n algorithm [J]. Electronics Optics & Control, 2025, 32(7): 27–32.
12 向征, 张佳浩 基于SM-YOLOv8n的无人机航拍目标检测[J]. 海军航空大学学报, 2025, 40 (2): 321- 328
XIANG Zheng, ZHANG Jiahao UAV aerial target detection based on SM-YOLOv8n[J]. Journal of Naval Aviation University, 2025, 40 (2): 321- 328
13 SUN Y, LAN Z, SUN Y, et al Ldstd: low-altitude drone aerial small target detector[J]. The Journal of Supercomputing, 2025, 81 (2): 414
doi: 10.1007/s11227-025-06950-3
14 LIU J, WEN B, XIAO J, et al Design of UAV target detection network based on deep feature fusion and optimization with small targets in complex contexts[J]. Neurocomputing, 2025, 639: 130207
doi: 10.1016/j.neucom.2025.130207
15 YANG W, HE Q, LI Z A lightweight multidimensional feature network for small object detection on UAVs[J]. Pattern Analysis and Applications, 2025, 28 (1): 29
doi: 10.1007/s10044-024-01389-3
16 KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements [EB/OL]. (2024–10–23) [2025–05–20]. https://www.arxiv.org/abs/2410.17725.
17 ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatial attention and standard convolutional operation [EB/OL]. (2024–03–28) [2025–05–20]. https://arxiv.org/abs/2304.03198.
18 CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800–1807.
19 CAI H, LI J, HU M, et al. EfficientViT: multi-scale linear attention for high-resolution dense prediction [EB/OL]. (2024–02–06) [2025–05–20]. https://arxiv.org/abs/2205.14756.
20 CAO Y, HE Z, WANG L, et al. VisDrone-DET2021: the vision meets drone object detection challenge results [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 2847–2854.
21 PENG Y, CHEN D Z, SONKA M. U-Net V2: rethinking the skip connections of U-Net for medical image segmentation [C]// Proceedings of the IEEE 22nd International Symposium on Biomedical Imaging. Houston: IEEE, 2025: 1–5.
[1] 翟亚红,陈雅玲,徐龙艳,龚玉. 改进YOLOv8s的轻量级无人机航拍小目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1708-1717.
[2] 王浚银,文斌,沈艳军,张俊,王子豪. 基于改进YOLOv7-tiny的铝型材表面缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(3): 523-534.
[3] 张会娟,李坤鹏,姬淼鑫,刘振江,刘建娟,张弛. 基于空间相关性增强的无人机检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 468-479.
[4] 莫恒辉,魏霖静. 基于改进YOLOv7的复杂环境下苹果目标检测[J]. 浙江大学学报(工学版), 2024, 58(12): 2447-2458.
[5] 宋耀莲,王粲,李大焱,刘欣怡. 基于改进YOLOv5s的无人机小目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(12): 2417-2426.
[6] 杜丁健,高遵海,陈倬. 基于改进YOLOv5的枸杞虫害检测[J]. 浙江大学学报(工学版), 2024, 58(10): 1992-2000.
[7] 韩俊,袁小平,王准,陈烨. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.
[8] 徐利锋,黄海帆,丁维龙,范玉雷. 基于改进DenseNet的水果小目标检测[J]. 浙江大学学报(工学版), 2021, 55(2): 377-385.
[9] 林志洁,罗壮,赵磊,鲁东明. 特征金字塔多尺度全卷积目标检测算法[J]. 浙江大学学报(工学版), 2019, 53(3): 533-540.
[10] 赵云峰 陈隆道 孟庆利. 提高红外经纬仪跟踪弱小目标精度的新算法[J]. J4, 2008, 42(7): 1169-1173.