| 计算机技术与控制工程 |
|
|
|
|
| 重构YOLOv11的无人机小目标检测算法 |
孟昱煜( ),孔垂乐,火久元*( ),武泽宇 |
| 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 |
|
| UAV small target detection algorithm based on reconstruction of YOLOv11 |
Yuyu MENG( ),Chuile KONG,Jiuyuan HUO*( ),Zeyu WU |
| School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
引用本文:
孟昱煜,孔垂乐,火久元,武泽宇. 重构YOLOv11的无人机小目标检测算法[J]. 浙江大学学报(工学版), 2026, 60(2): 303-312.
Yuyu MENG,Chuile KONG,Jiuyuan HUO,Zeyu WU. UAV small target detection algorithm based on reconstruction of YOLOv11. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 303-312.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.008
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I2/303
|
| 1 |
钟博, 王鹏飞, 王乙乔, 等 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报: 工学版, 2024, 58 (5): 879- 890 ZHONG Bo, WANG Pengfei, WANG Yiqiao, et al Survey of deep learning based EEG data analysis technology[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (5): 879- 890
|
| 2 |
刘亮. 高起点发展低空经济 [N]. 经济日报, 2025-03-30(7).
|
| 3 |
孙卫国, 吕人力, 李凌威, 等. 低空经济面临的机遇、挑战与城市空中交通规划展望 [J]. 城市交通, 2025, 23(2): 13–19. SUN Weiguo, LYU Renli, LI Lingwei, et al. Opportunities and challenges for low-altitude economy and future prospects of urban air mobility planning [J]. Urban Transport of China, 2025, 23(2): 13–19.
|
| 4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
|
| 5 |
GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440–1448.
|
| 6 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
| 7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21–37.
|
| 8 |
PULIPALUPULA M, PATLOLA S, NAYAKI M, et al. Object detection using you only look once (YOLO) algorithm in convolution neural network (CNN) [C]// Proceedings of the IEEE 8th International Conference for Convergence in Technology (I2CT). Lonavla: IEEE, 2023: 1–4.
|
| 9 |
宋耀莲, 王粲, 李大焱, 等 基于改进YOLOv5s的无人机小目标检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2417- 2426 SONG Yaolian, WANG Can, LI Dayan, et al UAV small target detection algorithm based on improved YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2417- 2426
|
| 10 |
韩俊, 袁小平, 王准, 等 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1224- 1233 HAN Jun, YUAN Xiaoping, WANG Zhun, et al UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1224- 1233
|
| 11 |
杨智能, 钟小勇, 李华耀, 等. 改进YOLOv8n的航拍小目标检测算法 [J]. 电光与控制, 2025, 32(7): 27–32. YANG Zhineng, ZHONG Xiaoyong, LI Huayao, et al. Aerial small target detection based on improved YOLOv8n algorithm [J]. Electronics Optics & Control, 2025, 32(7): 27–32.
|
| 12 |
向征, 张佳浩 基于SM-YOLOv8n的无人机航拍目标检测[J]. 海军航空大学学报, 2025, 40 (2): 321- 328 XIANG Zheng, ZHANG Jiahao UAV aerial target detection based on SM-YOLOv8n[J]. Journal of Naval Aviation University, 2025, 40 (2): 321- 328
|
| 13 |
SUN Y, LAN Z, SUN Y, et al Ldstd: low-altitude drone aerial small target detector[J]. The Journal of Supercomputing, 2025, 81 (2): 414
doi: 10.1007/s11227-025-06950-3
|
| 14 |
LIU J, WEN B, XIAO J, et al Design of UAV target detection network based on deep feature fusion and optimization with small targets in complex contexts[J]. Neurocomputing, 2025, 639: 130207
doi: 10.1016/j.neucom.2025.130207
|
| 15 |
YANG W, HE Q, LI Z A lightweight multidimensional feature network for small object detection on UAVs[J]. Pattern Analysis and Applications, 2025, 28 (1): 29
doi: 10.1007/s10044-024-01389-3
|
| 16 |
KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements [EB/OL]. (2024–10–23) [2025–05–20]. https://www.arxiv.org/abs/2410.17725.
|
| 17 |
ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatial attention and standard convolutional operation [EB/OL]. (2024–03–28) [2025–05–20]. https://arxiv.org/abs/2304.03198.
|
| 18 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800–1807.
|
| 19 |
CAI H, LI J, HU M, et al. EfficientViT: multi-scale linear attention for high-resolution dense prediction [EB/OL]. (2024–02–06) [2025–05–20]. https://arxiv.org/abs/2205.14756.
|
| 20 |
CAO Y, HE Z, WANG L, et al. VisDrone-DET2021: the vision meets drone object detection challenge results [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 2847–2854.
|
| 21 |
PENG Y, CHEN D Z, SONKA M. U-Net V2: rethinking the skip connections of U-Net for medical image segmentation [C]// Proceedings of the IEEE 22nd International Symposium on Biomedical Imaging. Houston: IEEE, 2025: 1–5.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|