Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2205-2212    DOI: 10.3785/j.issn.1008-973X.2025.10.021
信息与通信工程     
基于FFT-CNN-GCN的电网故障诊断
安春丽1(),张碧玲1,*(),赵国安2,王博3,刘岩4
1. 北京邮电大学 信息与通信工程学院,北京 100876
2. 北京邮电大学 网络教育学院,北京 100088
3. 国网北京市电力公司电力科学研究院,北京 100075
4. 山东科汇电力自动化股份有限公司,山东 淄博 255087
Power grid fault diagnosis based on FFT-CNN-GCN
Chunli AN1(),Biling ZHANG1,*(),Guoan ZHAO2,Bo WANG3,Yan LIU4
1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. School of Network Education, Beijing University of Posts and Telecommunications, Beijing 100088, China
3. State Grid Beijing Electric Power Research Institute, Beijing 100075, China
4. Shandong Kehui Power Automation Limited Company, Zibo 255087, China
 全文: PDF(923 KB)   HTML
摘要:

为了实现电网故障类型判断、故障线路定位和故障距离判断,提出融合快速傅里叶变换(FFT)、卷积神经网络(CNN)和图卷积神经网络(GCN)的电网故障诊断新模型. 通过FFT对电压和电流信号进行时域和频域分解,提取信号的基波幅值和相位,利用CNN提取分解后数据的时序特征,引入层归一化增强模型的稳定性. 结合GCN处理电网空间拓扑,提取并整合空间特征. 通过对IEEE 39节点电网系统的建模和仿真验证模型的有效性. 实验结果表明,所提模型具有较强的泛化能力,在不同任务、采样间隔和噪声影响下的故障诊断准确率优于现有模型.

关键词: 故障类型故障线路故障距离快速傅里叶变换(FFT)卷积神经网络(CNN)图卷积神经网络(GCN)    
Abstract:

To achieve fault type judgment, fault line localization, and fault distance judgment in the grid, a novel hybrid network model integrating fast Fourier transform (FFT), convolutional neural networks (CNN), and graph convolutional networks (GCN) was proposed for grid fault diagnosis. Voltage and current signals were decomposed in time and frequency domains by FFT to extract fundamental waveform amplitude and phase. CNN extracted the temporal features of the decomposed data, and layer normalization was introduced to enhance the model stability. The spatial topology of the grid was processed with GCN to extract and integrate spatial features. The model’s effectiveness was verified through modeling and simulation of the IEEE 39-bus power grid system. Experimental results show that the proposed model possesses strong generalization capabilities, and the fault diagnosis accuracy under various tasks, sampling intervals, and noise conditions outperforms existing models.

Key words: fault type    fault line    fault distance    fast Fourier transform (FFT)    convolutional neural network (CNN)    graph convolutional network (GCN)
收稿日期: 2024-12-23 出版日期: 2025-10-27
CLC:  TM 769  
基金资助: 国家自然科学基金资助项目(62171060).
通讯作者: 张碧玲     E-mail: anli1493258487@bupt.edu.cn;bilingzhang@bupt.edu.cn
作者简介: 安春丽(2000—),女,硕士生,从事能源互联网研究. orcid.org/0009-0007-7772-1032. E-mail:anli1493258487@bupt.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
安春丽
张碧玲
赵国安
王博
刘岩

引用本文:

安春丽,张碧玲,赵国安,王博,刘岩. 基于FFT-CNN-GCN的电网故障诊断[J]. 浙江大学学报(工学版), 2025, 59(10): 2205-2212.

Chunli AN,Biling ZHANG,Guoan ZHAO,Bo WANG,Yan LIU. Power grid fault diagnosis based on FFT-CNN-GCN. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2205-2212.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.021        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2205

故障类型故障类型细分
LG(单相接地故障)AG、BG、CG
LL(两相短路故障)AB、AC、BC
LLG(两相接地故障)ABG、ACG、BCG
LLL(三相短路故障)ABC
表 1  电网故障类型
图 1  卷积神经网络的结构
图 2  图卷积神经网络的结构
图 3  IEEE 39节点电网系统的拓扑结构
图 4  基于FFT-CNN-GCN的电网故障诊断模型结构
图 5  基于FFT-CNN-GCN的电网故障诊断模型执行不同任务的损失值和准确率折线图
图 6  不同组合模型的准确率对比
任务FFT-CNN-GCNFFT-CNN-LSTM
AccF1PRAccF1PR
类型判断0.99840.99780.99760.99810.98930.98930.98930.9893
线路定位0.98530.98380.98400.98370.92740.92770.92870.9274
联合判断0.95920.94910.95530.95020.91460.91510.91780.9146
距离判断0.98040.97720.97740.97730. 91490.91480.91570.9149
表 2  不同电网故障诊断模型的性能对比
图 7  不同采样间隔下3种模型的准确率对比
图 8  不同噪声水平下基于FFT-CNN-GCN的电网故障诊断模型执行不同任务的准确率
11 王发麟, 袁刚, 龚建华, 等 基于IAGA-BP的复杂机电产品线缆故障定位方法研究[J]. 电力系统及其自动化学报, 2023, 35 (7): 65- 73
WANG Falin, YUAN Gang, GONG Jianhua, et al Research on cable fault location method for complex mechatronic products based on IAGA-BP[J]. Proceedings of the CSU-EPSA, 2023, 35 (7): 65- 73
12 刘科研, 董伟杰, 肖仕武, 等 基于电压数据SVM分类的有源配电网故障判别及定位[J]. 电网技术, 2021, 45 (6): 2369- 2379
LIU Keyan, DONG Weijie, XIAO Shiwu, et al Fault identification and location of active distribution network based on SVM classification of voltage data[J]. Power System Technology, 2021, 45 (6): 2369- 2379
13 WEN L, LI X, GAO L A new two-level hierarchical diagnosis network based on convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (2): 330- 338
doi: 10.1109/TIM.2019.2896370
14 ZHAO M, BARATI M A real-time fault localization in power distribution grid for wildfire detection through deep convolutional neural networks[J]. IEEE Transactions on Industry Applications, 2021, 57 (4): 4316- 4326
doi: 10.1109/TIA.2021.3083645
15 李佳玮, 王小君, 和敬涵, 等 基于图注意力网络的配电网故障定位方法[J]. 电网技术, 2021, 45 (6): 2113- 2121
LI Jiawei, WANG Xiaojun, HE Jinghan, et al Distribution network fault location based on graph attention network[J]. Power System Technology, 2021, 45 (6): 2113- 2121
16 LIANG L, ZHANG H, CAO S, et al. Fault location method for distribution networks based on graph attention networks [C]// Proceedings of the 3rd International Conference on Energy and Electrical Power Systems. Guangzhou: IEEE, 2024: 573–577.
17 邓丰, 史鸿飞, 冯思旭, 等 CNN-LSTM全景故障特征挖掘的配电网单端定位方法[J]. 中国电机工程学报, 2023, 43 (Suppl.1): 114- 126
DENG Feng, SHI Hongfei, FENG Sixu, et al Single-ended traveling wave location method for distribution network based on CNN-LSTM panoramic fault feature mining[J]. Proceedings of the CSEE, 2023, 43 (Suppl.1): 114- 126
18 LIANG J, JING T, NIU H, et al Two-terminal fault location method of distribution network based on adaptive convolution neural network[J]. IEEE Access, 2020, 8: 54035- 54043
doi: 10.1109/ACCESS.2020.2980573
1 LIAO Y Fault location for single-circuit line based on bus-impedance matrix utilizing voltage measurements[J]. IEEE Transactions on Power Delivery, 2008, 23 (2): 609- 617
doi: 10.1109/TPWRD.2008.915799
2 NAIDU O D, PRADHAN A K Precise traveling wave-based transmission line fault location method using single-ended data[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5197- 5207
doi: 10.1109/TII.2020.3027584
19 魏东, 龚庆武, 来文青, 等 基于卷积神经网络的输电线路区内外故障判断及故障选相方法研究[J]. 中国电机工程学报, 2016, 36 (Suppl.1): 21- 28
WEI Dong, GONG Qingwu, LAI Wenqing, et al Research on internal and external fault diagnosis and fault-selection of transmission line based on convolutional neural network[J]. Proceedings of the CSEE, 2016, 36 (Suppl.1): 21- 28
3 WANG Y, QIU D. A method of synthetical fault diagnosis for power system based on fuzzy hierarchical Petri net [C]// Proceedings of the IEEE International Conference on Mechatronics and Automation. Harbin: IEEE, 2016: 254–258.
4 WANG S P, ZHAO D M A hierarchical power grid fault diagnosis method using multi-source information[J]. IEEE Transactions on Smart Grid, 2020, 11 (3): 2067- 2079
doi: 10.1109/TSG.2019.2946901
5 张昊立, 张菁, 倪建辉, 等 基于改进麻雀算法的配电网故障定位[J]. 电力科学与工程, 2022, 38 (11): 25- 33
ZHANG Haoli, ZHANG Jing, NI Jianhui, et al Fault localization of distribution network based on improved sparrow algorithm[J]. Electric Power Science and Engineering, 2022, 38 (11): 25- 33
6 张旭, 魏娟, 赵冬梅, 等 电网故障诊断的研究历程及展望[J]. 电网技术, 2013, 37 (10): 2745- 2753
ZHANG Xu, WEI Juan, ZHAO Dongmei, et al Research course and prospects of power grid fault diagnosis[J]. Power System Technology, 2013, 37 (10): 2745- 2753
20 许可, 范馨月, 张恒荣 基于图卷积网络的配电网故障定位及故障类型识别[J]. 实验技术与管理, 2023, 40 (1): 26- 30
XU Ke, FAN Xinyue, ZHANG Hengrong Distribution network fault location and type identification based on graph convolution neural network[J]. Experimental Technology and Management, 2023, 40 (1): 26- 30
21 VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018−02−04)[2025−01−02]. https://arxiv.org/pdf/1710.10903.
22 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017−02−22)[2025−01−02]. https://arxiv.org/pdf/1609.02907.
23 HU J, HU W, CHEN J, et al Fault location and classification for distribution systems based on deep graph learning methods[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11 (1): 35- 51
doi: 10.35833/MPCE.2022.000204
24 LI Y, ZHANG Y, LIU W, et al. A fault pattern and convolutional neural network based single-phase earth fault identification method for distribution network [C]// Proceedings of the IEEE Innovative Smart Grid Technologies - Asia. Chengdu: IEEE, 2019: 838–843.
25 SUN Q, CHENG H, SONG Y Bi-objective reactive power reserve optimization to coordinate long- and short-term voltage stability[J]. IEEE Access, 2017, 6: 13057- 13065
26 LUO Y, LU C, ZHU L, et al Data-driven short-term voltage stability assessment based on spatial-temporal graph convolutional network[J]. International Journal of Electrical Power and Energy Systems, 2021, 130: 106753
doi: 10.1016/j.ijepes.2020.106753
27 杨彦杰, 董哲, 姚芳, 等 基于1D-CNN-LSTM混合神经网络模型的双桥并联励磁功率单元故障诊断[J]. 电网技术, 2021, 45 (5): 2025- 2032
YANG Yanjie, DONG Zhe, YAO Fang, et al Fault diagnosis of double bridge parallel excitation power unit based on 1D-CNN-LSTM hybrid neural network model[J]. Power System Technology, 2021, 45 (5): 2025- 2032
7 TAN M, LI J, ZHAO S, et al. Method of power grid fault diagnosis using intuitionistic fuzzy Petri nets with inhibitor arcs [C]// Proceedings of the IEEE 8th Data Driven Control and Learning Systems Conference. Dali: IEEE, 2019: 568–573.
8 LU J, ZHAO R, LI B, et al. Intelligent fault diagnosis method of power grid based on multi-source feature fusion [C]// Proceedings of the IEEE 5th Conference on Energy Internet and Energy System Integration. Taiyuan: IEEE, 2021: 1794–1797.
9 何瑞江, 胡志坚, 李燕, 等 含分布式电源配电网故障区段定位的线性整数规划方法[J]. 电网技术, 2018, 42 (11): 3684- 3692
HE Ruijiang, HU Zhijian, LI Yan, et al Fault section location method for DG-DNs based on integer linear programming[J]. Power System Technology, 2018, 42 (11): 3684- 3692
[1] 王立红,刘新倩,李静,冯志全. 基于联邦学习和时空特征融合的网络入侵检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1201-1210.
[2] 张梦瑶,周杰,李文婷,赵勇. 结合全局信息和局部信息的三维网格分割框架[J]. 浙江大学学报(工学版), 2025, 59(5): 912-919.
[3] 耿志强,陈威,马波,韩永明. 基于连续小波卷积神经网络的轴承智能故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(10): 2069-2075.
[4] 莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
[5] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[6] 张彦楠,黄小红,马严,丛群. 基于深度学习的录音文本分类方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1264-1271.
[7] 杨萍,王丹,康子健,李童,付利华,余悦任. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报(工学版), 2020, 54(5): 1039-1048.
[8] 李红光,郭英,眭萍,齐子森. 基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报(工学版), 2020, 54(10): 1945-1954.
[9] 贾子钰,林友芳,张宏钧,王晶. 基于深度卷积神经网络的睡眠分期模型[J]. 浙江大学学报(工学版), 2020, 54(10): 1899-1905.
[10] 叶刚,李毅波,马逐曦,成杰. 基于ViBe的端到端铝带表面缺陷检测识别方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1906-1914.
[11] 吕艳,张萌,姜吴昊,倪益华,钱小鸿. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报(工学版), 2019, 53(6): 1130-1138.
[12] 赫贵然,李奇,冯华君,徐之海,陈跃庭. 基于CNN特征提取的双焦相机连续数字变焦[J]. 浙江大学学报(工学版), 2019, 53(6): 1182-1189.
[13] 董月,冯华君,徐之海,陈跃庭,李奇. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报(工学版), 2019, 53(2): 373-381.
[14] 王敬昌,陈岭,余珊珊,蒋晨书,吴勇. 基于门控循环单元的多因素感知短期游客人数预测模型[J]. 浙江大学学报(工学版), 2019, 53(12): 2357-2364.
[15] 李浩,赵文杰,韩波. 基于滤波器裁剪的卷积神经网络加速算法[J]. 浙江大学学报(工学版), 2019, 53(10): 1994-2002.