计算机技术 |
|
|
|
|
基于时频特征的卷积神经网络跳频调制识别 |
李红光( ),郭英*( ),眭萍,齐子森 |
空军工程大学 信息与导航学院,陕西 西安 710077 |
|
Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics |
Hong-guang LI( ),Ying GUO*( ),Ping SUI,Zi-sen QI |
Information and Navigation College, Air Force Engineering University, Xi’an 710077, China |
引用本文:
李红光,郭英,眭萍,齐子森. 基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报(工学版), 2020, 54(10): 1945-1954.
Hong-guang LI,Ying GUO,Ping SUI,Zi-sen QI. Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1945-1954.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.011
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I10/1945
|
1 |
HAN L B, GAO F F, LI Z, et al Low complexity automatic modulation classification based on order-statistics[J]. IEEE Transactions on Wireless Communications, 2017, 16 (1): 400- 411
doi: 10.1109/TWC.2016.2623716
|
2 |
DOBTE O A, ONER M, RAJAN S, et al. Cyclostationarity-based robust algorithms for QAM signal identification[J]. IEEE Communications Letters, 2012, 16 (1): 12- 15
doi: 10.1109/LCOMM.2011.112311.112006
|
3 |
SU W Feature space analysis of modulation classification using very high-order statistics[J]. IEEE Communications Letters, 2013, 17 (9): 1688- 1691
doi: 10.1109/LCOMM.2013.080613.130070
|
4 |
吴斌, 袁亚博, 汪勃 基于记忆因子的连续相位调制信号最大似然调制识别[J]. 电子与信息学报, 2016, 38 (10): 2546- 2552 WU Bin, YUAN Ya-bo, WANG Bo Maximum likelihood modulation recognition for continuous phase modulation signals using memory factor[J]. Journal of Electronics and Information Technology, 2016, 38 (10): 2546- 2552
|
5 |
WANG F G, DOBRE O A, CHAN C, et al. Novel fold-based kolmogorov-smirnov modulation classifier[J]. IEEE Signal Processing Letters, 2016, 23 (7): 1003- 1007
doi: 10.1109/LSP.2016.2572666
|
6 |
赵雄文, 郭春霞, 李景春 基于高阶累积量和循环谱的信号调制方式混合识别算法[J]. 电子与信息学报, 2016, 38 (3): 674- 680 ZHAO Xiong-wen, GUO Chun-xia, LI Jing-chun Mixed recognition algorithm for signal modulation schemes by high-order cumulants and cyclic spectrum[J]. Journal of Electronics and Information Technology, 2016, 38 (3): 674- 680
|
7 |
XIE L J, WAN Q Cyclic feature based modulation recognition using compressive sensing[J]. IEEE Wireless Communications Letters, 2017, 6 (3): 402- 405
doi: 10.1109/LWC.2017.2697853
|
8 |
ZIEGLER J L, ARN R T, CHAMBERS W, et al. Modulation recognition with GNU radio, keras, and hackrf [C]// IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE, 2017: 1-3.
|
9 |
LI X Q, HUANG Z T, WANG F H, et al Towards convolutional neural networks on pulse repetition interval modulation recognition[J]. IEEE Communications Letters, 2018, 22 (11): 2286- 2289
doi: 10.1109/LCOMM.2018.2864725
|
10 |
QU Z Y, MAO X J, DENG Z A Radar signal intra-pulse modulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6 (1): 43874- 43884
|
11 |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4 (3): 433- 445
doi: 10.1109/TCCN.2018.2835460
|
12 |
ALI A, FAN Yang-yu K-sparse autoencoder based automatic modulation classification with low complexity[J]. IEEE Communications Letters, 2017, 21 (10): 2162- 2165
doi: 10.1109/LCOMM.2017.2717821
|
13 |
LI R D, LI L Z, YANG S Y, et al Robust automated VHF modulation recognition based on deep convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (5): 946- 949
doi: 10.1109/LCOMM.2018.2809732
|
14 |
郭立民, 寇韵涵, 陈涛 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40 (4): 875- 881 GUO Li-min, KOU Yun-han, CHEN Tao Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics and Information Technology, 2018, 40 (4): 875- 881
|
15 |
KINGMA D, BA J. Adam: a method for stochastic optimization [C]// The 3rd International Conference on Learning Representations. San Diego: IEEE, 2015: 1-15.
|
16 |
张坤峰, 郭英, 齐子森, 等 基于稀疏贝叶斯重构的多跳频信号参数估计[J]. 华中科技大学学报: 自然科学版, 2017, 45 (1): 97- 102 ZHANG Kun-feng, GUO Ying, QI Zi-sen, et al Parameter estimation of multi-hop frequency signals based on sparse Bayesian reconstruction[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (1): 97- 102
|
17 |
ZHANG M, LIU L T, DIAO M LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682- 1702
doi: 10.3390/s16101682
|
18 |
STANKOVIC S, DJUROVIC I, PITAS I Watermarking in the space/spatial-frequency domain using two-dimensional Radon-Wigner distribution[J]. IEEE Transactions on Image Processing, 2001, 10 (4): 650- 658
doi: 10.1109/83.913599
|
19 |
DENG L, YU D Deep learning: methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7 (3): 197- 387
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification [C]// 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1026-1034.
|
21 |
ZHANG M, DIAO M, GUO L M Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5 (1): 11074- 11082
|
22 |
HAO W, BIE R, GUO J, et al Optimized CNN based image recognition through target region selection[J]. Optik-International Journal for Light and Electron Optics, 2018, 156 (1): 772- 777
|
23 |
FU L, FENG Y, ELKAMIL T, et al Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (1): 205- 211
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|