机械与能源工程 |
|
|
|
|
采用卷积神经网络的老年人跌倒检测系统设计 |
吕艳1,2(),张萌1,姜吴昊1,倪益华1,*(),钱小鸿3 |
1. 浙江农林大学 工程学院,浙江 临安 311300 2. 浙江大学 机械工程学院,浙江 杭州 310027 3. 银江股份有限公司 银江研究院,浙江 杭州 310030 |
|
Design of elderly fall detection system using CNN |
Yan LV1,2(),Meng ZHANG1,Wu-hao JIANG1,Yi-hua NI1,*(),Xiao-hong QIAN3 |
1. School of Engineering, Zhejiang A&F University, Lin’an 311300, China 2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 3. Enjoyor Research Institute, Enjoyor Co. Ltd, Hangzhou 310030, China |
引用本文:
吕艳,张萌,姜吴昊,倪益华,钱小鸿. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报(工学版), 2019, 53(6): 1130-1138.
Yan LV,Meng ZHANG,Wu-hao JIANG,Yi-hua NI,Xiao-hong QIAN. Design of elderly fall detection system using CNN. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1130-1138.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.012
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1130
|
1 |
师昉, 李福亮, 孙思佳, 等 中国老年跌倒研究的现状与对策[J]. 中国康复, 2018, 33 (3): 246- 248 SHI Fang, LI Fu-liang, SUN Si-jia, et al The present situation and countermeasures of the study of senile falls in China[J]. Chinese Journal of Rehabilitation, 2018, 33 (3): 246- 248
|
2 |
陈瑜, 姜小鹰, 杨美丽, 等 养老机构老年人跌倒效能状况及其影响因素分析[J]. 中国实用护理, 2016, 32 (6): 412- 415 CHEN Yu, JIANG Xiao-ying, YANG Mei-li, et al Investigation on the fall efficacy of elderly people in nursing homes and its influencing factors[J]. Chinese Journal of Practical Nursing, 2016, 32 (6): 412- 415
doi: 10.3760/cma.j.issn.1672-7088.2016.06.004
|
3 |
KHAN S S, HOEY J Review of fall detection techniques: a data availability perspective[J]. Medical Engineering and Physics, 2017, 1 (39): 12- 22
|
4 |
GHEN K H, HSU Y W, YANG J J, et al Enhanced characterization of an accelerometer-based fall detection algorithm using a repository[J]. Instrumentation Science and Technology, 2016, 11 (6): 382- 391
|
5 |
MADARSHAHIAN R, CAICEDO J M, ZAMBRANA D A. Evaluation of a time reversal method with dynamic time warping matching function for human fall detection using structural vibrations [C] // Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series. Florida: Springer, 2014: 171-176.
|
6 |
CHEN K H, YANG J J, JAW F S Accelerometer-based fall detection using feature extraction and support vector machine algorithms[J]. Instrumentation Science and Technology, 2016, 44 (2): 333- 342
|
7 |
LIM D, PARK C, KIM N Fall-detection algorithm using 3-axis acceleration: combination with simple threshold and hidden markov model[J]. Journal of Applied Mathematics, 2014, 9 (17): 342- 351
|
8 |
AZIZ O, MUSNGI M, PARK E J, et al. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials[J]. Medical and Biological Engineering and Computing, 2017, 55 (1): 45- 55
doi: 10.1007/s11517-016-1504-y
|
9 |
OZDEMIR A, BARSHAN B Detecting falls with wearable sensors using machine learning techniques[J]. Sensors, 2014, 14 (6): 10691- 10708
doi: 10.3390/s140610691
|
10 |
MONGIA M, KUMAR K, ERRAQABI A, et al. On random weights for texture generation in one layer CNNS [C] // ICASSP IEEE International Conference on Acoustics. New Orleans: IEEE, 2017: 2207-2211.
|
11 |
XIA Y, NAREN W L, WANG K Q, et al Detecting atrial fibrillation by deep convolutional neural networks[J]. Computers in Biology and Medicine, 2018, 93 (2): 84- 92
|
12 |
ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning [C] // Proceedings of the12th USENIX Symposium on Operating Systems Design and Implementation. Savannah: USENIX, 2016: 265-283.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|