Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2164-2174    DOI: 10.3785/j.issn.1008-973X.2025.10.017
计算机技术     
融合用户行为与评论关系的双通道电商欺诈检测方法
凤丽洲1(),白至纯1,王友卫2,*()
1. 天津财经大学 统计学院,天津 300222
2. 中央财经大学 信息学院,北京 100081
Dual-channel E-commerce fraud detection method integrating user behavior and review relationships
Lizhou FENG1(),Zhichun BAI1,Youwei WANG2,*()
1. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China
2. School of Information, Central University of Finance and Economics, Beijing 100081, China
 全文: PDF(1252 KB)   HTML
摘要:

现有方法偏重用户行为的全局建模,对评论信息挖掘不足,为此提出双通道图神经网络方法用于电商平台用户级欺诈检测任务. 通过实体交互图和评论语义图对用户的多维行为建模,实体交互图基于购买与评分行为捕捉整体交互模式,评论语义图利用时间敏感性建模评论之间的语义关联以刻画细粒度行为特性. 利用图神经网络对双图并行建模,通过注意力机制实现双通道特征的动态交互优化,生成包含多跳邻居信息的高阶节点特征. 通过多头加性注意力机制自适应融合不同邻域范围和特征空间,生成用户级的综合行为表示. 在公开数据集上的实验结果表明,所提方法在多个指标上显著优于传统方法,验证了方法在用户级欺诈检测中的有效性.

关键词: 图神经网络注意力机制欺诈检测用户行为评论关系    
Abstract:

A dual-channel graph neural network method was proposed for user-level fraud detection tasks on E-commerce platforms to address the limitations of existing approaches that overemphasized global modeling of user behavior while insufficiently exploiting comment information. Multi-dimensional user behavior was modeled through the construction of two complementary graphs: an entity interaction graph and a comment semantic graph. The entity interaction graph was designed to capture global interaction patterns based on purchase and rating behaviors, while the comment semantic graph was built to model time-sensitive semantic relations between comments for characterizing fine-grained behavioral features. Parallel modeling of the dual graphs was performed using graph neural networks. Dynamic interaction optimization between dual-channel features was achieved through an attention mechanism, and higher-order node features containing multi-hop neighborhood information were generated. A comprehensive user-level behavior representation was produced by adaptively fusing different neighborhood ranges and feature spaces with a multi-head additive attention mechanism. Experimental evaluations were conducted on public datasets to validate the proposed method, and significant improvements were observed in multiple evaluation metrics compared to traditional approaches. Results show that the proposed method effectively enhances fraud detection performance at the user level.

Key words: graph neural networks    attention mechanism    fraud detection    user behavior    review relationships
收稿日期: 2025-01-08 出版日期: 2025-10-27
CLC:  TP 393  
基金资助: 天津市教委科研计划项目(2023SK115).
通讯作者: 王友卫     E-mail: flzvg@126.com;ywwang15@126.com
作者简介: 凤丽洲(1987—),女,副教授,博士,从事机器学习、数据挖掘研究. orcid.org/0000-0002-1010-8539. E-mail:flzvg@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
凤丽洲
白至纯
王友卫

引用本文:

凤丽洲,白至纯,王友卫. 融合用户行为与评论关系的双通道电商欺诈检测方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2164-2174.

Lizhou FENG,Zhichun BAI,Youwei WANG. Dual-channel E-commerce fraud detection method integrating user behavior and review relationships. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2164-2174.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.017        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2164

图 1  双通道图神经网络方法的总体框架
数据集n
用户虚假用户评论虚假评论
Pet35 872637157 563713
Garden28 230903114 3541 080
Instrument17 81386687 6781 131
Yelp35 3781 102148 4453 328
表 1  实验用数据集的统计信息
方法PetGardenInstrumentYelp
AUCRmF1AUCRmF1AUCRmF1AUCRmF1
GCN49.8950.0049.1249.7050.0048.4555.1151.4345.8852.3550.0049.10
GAT50.4850.3249.5349.0450.0048.7558.2952.7748.7551.7050.2149.29
GraghSAGE74.7150.0049.8973.1950.1349.4576.2255.4357.6867.4350.0049.29
GEM64.3659.1653.9454.3952.1151.7766.7263.2552.7964.8749.8949.09
GeniePath53.9950.0050.0355.7751.0248.9753.2150.0049.5851.2050.0049.79
FdGars63.9352.0050.1456.1251.3148.5852.5850.7847.8852.3751.3250.03
GraphConsis79.9374.8857.6874.5871.5954.2677.1172.2955.9869.1852.1049.28
PC-GNN67.8661.9051.4263.6659.0753.9063.6759.3450.0161.0854.7752.82
EC-GNN87.1479.0862.0588.0778.5267.0388.8981.0965.2186.7379.0354.26
表 2  不同欺诈检测方法在实验用数据集上的性能对比
消融模型PetGardenInstrumentYelp
AUCRmF1AUCRmF1AUCRmF1AUCRmF1
EC-NoERG84.6572.4259.3386.5276.7365.5684.5676.8660.8984.6976.6852.60
EC-NoCRG63.8957.2553.8956.2953.9453.4861.5560.7553.6270.1265.4052.19
EC-NoAtt84.8475.0959.0082.4472.5663.2182.4974.3258.4084.6776.7951.95
EC-Tfidf85.6372.8560.8678.3061.1360.7074.2369.0956.9570.4565.1352.19
EC-GNN87.1479.0862.0588.0778.5267.0388.8981.0965.2186.7379.0354.26
表 3  基于实验用数据集的模型消融实验结果对比
图 2  实体交互图隐藏层维度对双通道图神经网络方法性能的影响分析
图 3  评论语义图隐藏层维度对双通道图神经网络方法性能的影响分析
图 4  迭代次数对双通道图神经网络方法性能的影响分析
图 5  欺诈节点及其一跳邻居的网络可视化
图 6  正常节点及其一跳邻居的网络可视化
1 肖可砾, 熊辉 运用数据挖掘技术检测金融欺诈行为[J]. 金融电子化, 2010, (8): 89- 90
XIAO Keli, XIONG Hui Detecting financial fraud using data mining techniques[J]. Financial Computerizing, 2010, (8): 89- 90
2 SALEH M M A, ALADWAN M, ALSINGLAWI O, et al Predicting fraudulent financial statements using fraud detection models[J]. Academy of Strategic Management Journal, 2021, 20 (Suppl.3): 1- 17
3 王成, 王昌琪 一种面向网络支付反欺诈的自动化特征工程方法[J]. 计算机学报, 2020, 43 (10): 1983- 2001
WANG Cheng, WANG Changqi An automated feature engineering method for online payment fraud detection[J]. Chinese Journal of Computers, 2020, 43 (10): 1983- 2001
4 琚春华, 陈冠宇, 鲍福光 基于kNN-Smote-LSTM的消费金融风险检测模型: 以信用卡欺诈检测为例[J]. 系统科学与数学, 2021, 41 (2): 481- 498
JU Chunhua, CHEN Guanyu, BAO Fuguang KNN-smote-LSTM based consumer financial risk detection model: a case credit card fraud detection[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41 (2): 481- 498
5 JAN C L Detection of financial statement fraud using deep learning for sustainable development of capital markets under information asymmetry[J]. Sustainability, 2021, 13 (17): 9879
doi: 10.3390/su13179879
6 ÇAKıR M Y, ŞIRIN Y Enhanced autoencoder-based fraud detection: a novel approach with noise factor encoding and SMOTE[J]. Knowledge and Information Systems, 2024, 66 (1): 635- 652
doi: 10.1007/s10115-023-02016-z
7 KIM H, LEE B S, SHIN W Y, et al Graph anomaly detection with graph neural networks: current status and challenges[J]. IEEE Access, 2022, 10: 111820- 111829
doi: 10.1109/ACCESS.2022.3211306
8 LI Q, HE Y, XU C, et al. Dual-augment graph neural network for fraud detection [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. Atlanta: ACM, 2022: 4188–4192.
9 MOTIE S, RAAHEMI B Financial fraud detection using graph neural networks: a systematic review[J]. Expert Systems with Applications, 2024, 240: 122156
doi: 10.1016/j.eswa.2023.122156
10 BAI S, ZHANG F, TORR P H S Hypergraph convolution and hypergraph attention[J]. Pattern Recognition, 2021, 110: 107637
doi: 10.1016/j.patcog.2020.107637
11 LIU X, SONG Y Graph convolutional networks with dual message passing for subgraph isomorphism counting and matching[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (7): 7594- 7602
doi: 10.1609/aaai.v36i7.20725
12 LI Y, TAM D S H, XIE S, et al. Temporal graph representation learning for detecting anomalies in E-payment systems [C]// Proceedings of the International Conference on Data Mining Workshops. Auckland: IEEE, 2021: 983–990.
13 HU H, ZHANG L, LI S, et al. Fraudulent user detection via behavior information aggregation network (BIAN) on large-scale financial social network [EB/OL]. (2023–03–26)[2025–01–06]. https://arxiv.org/pdf/2211.06315.
14 CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks [C]// Proceedings of the International Conference on Machine Learning. Vienna: PMLR, 2020: 1725–1735.
15 XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks [C]// Porceedings of International Conference on Machine Learning. Stockholm: PMLR, 2018: 5453–5462.
16 RUSCH T K, CHAMBERLAIN B P, MAHONEY M W, et al. Gradient gating for deep multi-rate learning on graphs [EB/OL]. (2023–03–15)[2025–03–31]. https://arxiv.org/pdf/2210.00513.
17 YING C, CAI T, LUO S, et al. Do transformers really perform badly for graph representation? [C]// Proceedings of the Neural Information Processing Systems. [S.l.]: NeurIPS, 2021: 1–12.
18 ZHANG S, YIN H, CHEN T, et al. GCN-based user representation learning for unifying robust recommendation and fraudster detection [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2020: 689–698.
19 HE R, MCAULEY J. Ups and Downs: modeling the visual evolution of fashion trends with one-class collaborative filtering [C]// Proceedings of the 25th International Conference on World Wide Web. Montréal: International World Wide Web Conferences Steering Committee, 2016: 507–517.
20 HUSSAIN N, MIRZA H T, ALI A, et al Spammer group detection and diversification of customers’ reviews[J]. PeerJ Computer Science, 2021, 7: e472
doi: 10.7717/peerj-cs.472
21 SONG J, QU X, HU Z, et al A subgraph-based knowledge reasoning method for collective fraud detection in E-commerce[J]. Neurocomputing, 2021, 461: 587- 597
doi: 10.1016/j.neucom.2021.03.134
22 KUMAR S, HOOI B, MAKHIJA D, et al. REV2: fraudulent user prediction in rating platforms [C]// Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 333–341.
23 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017–02–22)[2025–01–06]. https://arxiv.org/pdf/1609.02907.
24 VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018–02–04)[2025–01–06]. https://arxiv.org/pdf/1710.10903.
25 HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 1025–1035.
26 LIU Z, CHEN C, YANG X, et al. Heterogeneous graph neural networks for malicious account detection [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 2077–2085.
27 LIU Z, CHEN C, LI L, et al GeniePath: graph neural networks with adaptive receptive paths[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 4424- 4431
doi: 10.1609/aaai.v33i01.33014424
28 WANG J, WEN R, WU C, et al. FdGars: fraudster detection via graph convolutional networks in online app review system [C]// Proceedings of the Proceedings of The 2019 World Wide Web Conference. San Francisco: ACM, 2019: 310–316.
29 LIU Z, DOU Y, YU P S, et al. Alleviating the inconsistency problem of applying graph neural network to fraud detection [EB/OL]. (2020–07–02)[2025–01–06]. https://arxiv.org/pdf/2005.00625.
[1] 张学军,梁书滨,白万荣,张奉鹤,黄海燕,郭梅凤,陈卓. 基于异构图表征的源代码漏洞检测方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1644-1652.
[2] 林宜山,左景,卢树华. 基于多头自注意力机制与MLP-Interactor的多模态情感分析[J]. 浙江大学学报(工学版), 2025, 59(8): 1653-1661.
[3] 翟亚红,陈雅玲,徐龙艳,龚玉. 改进YOLOv8s的轻量级无人机航拍小目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1708-1717.
[4] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[5] 杨荣泰,邵玉斌,杜庆治. 基于结构感知的少样本知识补全[J]. 浙江大学学报(工学版), 2025, 59(7): 1394-1402.
[6] 杨宇豪,郭永存,李德永,王爽. 基于视觉信息的煤矸识别分割定位方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1421-1433.
[7] 王圣举,张赞. 基于加速扩散模型的缺失值插补算法[J]. 浙江大学学报(工学版), 2025, 59(7): 1471-1480.
[8] 蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.
[9] 鞠文博,董华军. 基于上下文信息融合与动态采样的主板缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1159-1168.
[10] 周翔宇,刘毅志,赵肄江,廖祝华,张德城. 面向目的地预测的层次化空间嵌入BiGRU模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1211-1218.
[11] 李宗民,徐畅,白云,鲜世洋,戎光彩. 面向点云理解的双邻域图卷积方法[J]. 浙江大学学报(工学版), 2025, 59(5): 879-889.
[12] 刘洪伟,王磊,刘阳,张鹏超,乔石. 基于重组二次分解及LSTNet-Atten的短期负荷预测[J]. 浙江大学学报(工学版), 2025, 59(5): 1051-1062.
[13] 刘登峰,郭文静,陈世海. 基于内容引导注意力的车道线检测网络[J]. 浙江大学学报(工学版), 2025, 59(3): 451-459.
[14] 姚明辉,王悦燕,吴启亮,牛燕,王聪. 基于小样本人体运动行为识别的孪生网络算法[J]. 浙江大学学报(工学版), 2025, 59(3): 504-511.
[15] 尹向雷,屈少鹏,解永芳,苏妮. 基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测[J]. 浙江大学学报(工学版), 2025, 59(3): 535-545.