| 计算机技术 |
|
|
|
|
| 融合用户行为与评论关系的双通道电商欺诈检测方法 |
凤丽洲1( ),白至纯1,王友卫2,*( ) |
1. 天津财经大学 统计学院,天津 300222 2. 中央财经大学 信息学院,北京 100081 |
|
| Dual-channel E-commerce fraud detection method integrating user behavior and review relationships |
Lizhou FENG1( ),Zhichun BAI1,Youwei WANG2,*( ) |
1. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China 2. School of Information, Central University of Finance and Economics, Beijing 100081, China |
| 1 |
肖可砾, 熊辉 运用数据挖掘技术检测金融欺诈行为[J]. 金融电子化, 2010, (8): 89- 90 XIAO Keli, XIONG Hui Detecting financial fraud using data mining techniques[J]. Financial Computerizing, 2010, (8): 89- 90
|
| 2 |
SALEH M M A, ALADWAN M, ALSINGLAWI O, et al Predicting fraudulent financial statements using fraud detection models[J]. Academy of Strategic Management Journal, 2021, 20 (Suppl.3): 1- 17
|
| 3 |
王成, 王昌琪 一种面向网络支付反欺诈的自动化特征工程方法[J]. 计算机学报, 2020, 43 (10): 1983- 2001 WANG Cheng, WANG Changqi An automated feature engineering method for online payment fraud detection[J]. Chinese Journal of Computers, 2020, 43 (10): 1983- 2001
|
| 4 |
琚春华, 陈冠宇, 鲍福光 基于kNN-Smote-LSTM的消费金融风险检测模型: 以信用卡欺诈检测为例[J]. 系统科学与数学, 2021, 41 (2): 481- 498 JU Chunhua, CHEN Guanyu, BAO Fuguang KNN-smote-LSTM based consumer financial risk detection model: a case credit card fraud detection[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41 (2): 481- 498
|
| 5 |
JAN C L Detection of financial statement fraud using deep learning for sustainable development of capital markets under information asymmetry[J]. Sustainability, 2021, 13 (17): 9879
doi: 10.3390/su13179879
|
| 6 |
ÇAKıR M Y, ŞIRIN Y Enhanced autoencoder-based fraud detection: a novel approach with noise factor encoding and SMOTE[J]. Knowledge and Information Systems, 2024, 66 (1): 635- 652
doi: 10.1007/s10115-023-02016-z
|
| 7 |
KIM H, LEE B S, SHIN W Y, et al Graph anomaly detection with graph neural networks: current status and challenges[J]. IEEE Access, 2022, 10: 111820- 111829
doi: 10.1109/ACCESS.2022.3211306
|
| 8 |
LI Q, HE Y, XU C, et al. Dual-augment graph neural network for fraud detection [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. Atlanta: ACM, 2022: 4188–4192.
|
| 9 |
MOTIE S, RAAHEMI B Financial fraud detection using graph neural networks: a systematic review[J]. Expert Systems with Applications, 2024, 240: 122156
doi: 10.1016/j.eswa.2023.122156
|
| 10 |
BAI S, ZHANG F, TORR P H S Hypergraph convolution and hypergraph attention[J]. Pattern Recognition, 2021, 110: 107637
doi: 10.1016/j.patcog.2020.107637
|
| 11 |
LIU X, SONG Y Graph convolutional networks with dual message passing for subgraph isomorphism counting and matching[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (7): 7594- 7602
doi: 10.1609/aaai.v36i7.20725
|
| 12 |
LI Y, TAM D S H, XIE S, et al. Temporal graph representation learning for detecting anomalies in E-payment systems [C]// Proceedings of the International Conference on Data Mining Workshops. Auckland: IEEE, 2021: 983–990.
|
| 13 |
HU H, ZHANG L, LI S, et al. Fraudulent user detection via behavior information aggregation network (BIAN) on large-scale financial social network [EB/OL]. (2023–03–26)[2025–01–06]. https://arxiv.org/pdf/2211.06315.
|
| 14 |
CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks [C]// Proceedings of the International Conference on Machine Learning. Vienna: PMLR, 2020: 1725–1735.
|
| 15 |
XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks [C]// Porceedings of International Conference on Machine Learning. Stockholm: PMLR, 2018: 5453–5462.
|
| 16 |
RUSCH T K, CHAMBERLAIN B P, MAHONEY M W, et al. Gradient gating for deep multi-rate learning on graphs [EB/OL]. (2023–03–15)[2025–03–31]. https://arxiv.org/pdf/2210.00513.
|
| 17 |
YING C, CAI T, LUO S, et al. Do transformers really perform badly for graph representation? [C]// Proceedings of the Neural Information Processing Systems. [S.l.]: NeurIPS, 2021: 1–12.
|
| 18 |
ZHANG S, YIN H, CHEN T, et al. GCN-based user representation learning for unifying robust recommendation and fraudster detection [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2020: 689–698.
|
| 19 |
HE R, MCAULEY J. Ups and Downs: modeling the visual evolution of fashion trends with one-class collaborative filtering [C]// Proceedings of the 25th International Conference on World Wide Web. Montréal: International World Wide Web Conferences Steering Committee, 2016: 507–517.
|
| 20 |
HUSSAIN N, MIRZA H T, ALI A, et al Spammer group detection and diversification of customers’ reviews[J]. PeerJ Computer Science, 2021, 7: e472
doi: 10.7717/peerj-cs.472
|
| 21 |
SONG J, QU X, HU Z, et al A subgraph-based knowledge reasoning method for collective fraud detection in E-commerce[J]. Neurocomputing, 2021, 461: 587- 597
doi: 10.1016/j.neucom.2021.03.134
|
| 22 |
KUMAR S, HOOI B, MAKHIJA D, et al. REV2: fraudulent user prediction in rating platforms [C]// Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 333–341.
|
| 23 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017–02–22)[2025–01–06]. https://arxiv.org/pdf/1609.02907.
|
| 24 |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018–02–04)[2025–01–06]. https://arxiv.org/pdf/1710.10903.
|
| 25 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 1025–1035.
|
| 26 |
LIU Z, CHEN C, YANG X, et al. Heterogeneous graph neural networks for malicious account detection [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 2077–2085.
|
| 27 |
LIU Z, CHEN C, LI L, et al GeniePath: graph neural networks with adaptive receptive paths[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 4424- 4431
doi: 10.1609/aaai.v33i01.33014424
|
| 28 |
WANG J, WEN R, WU C, et al. FdGars: fraudster detection via graph convolutional networks in online app review system [C]// Proceedings of the Proceedings of The 2019 World Wide Web Conference. San Francisco: ACM, 2019: 310–316.
|
| 29 |
LIU Z, DOU Y, YU P S, et al. Alleviating the inconsistency problem of applying graph neural network to fraud detection [EB/OL]. (2020–07–02)[2025–01–06]. https://arxiv.org/pdf/2005.00625.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|