Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2364-2375    DOI: 10.3785/j.issn.1008-973X.2024.11.018
土木工程、交通工程     
浸水对重载铁路加筋路基动力特性的影响
李丽华1,2(),江曙光1,2,梅利芳1,2,*(),刘一鸣1,2
1. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068
2. 河湖健康感知与生态修复教育部重点实验室,湖北 武汉 430068
Influence of water immersion on dynamic characteristics of heavy-haul railway reinforced subgrade
Lihua LI1,2(),Shuguang JIANG1,2,Lifang MEI1,2,*(),Yiming LIU1,2
1. School of Civil Engineering, Architecture and the Environment, Hubei University of Technology, Wuhan 430068 , China
2. Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Wuhan 430068, China
 全文: PDF(1814 KB)   HTML
摘要:

为了解决重载铁路路基湿化后路基性能下降,影响列车行车安全的问题,通过室内模型实验模拟不同轴重列车动载作用,研究浸水前、后重载铁路加筋路基的动力特性及长期稳定性. 结果表明,浸水后素土路基的应力、沉降、加速度会显著增大;浸水后与素土路基相比,格室加筋后路基最大应力下降21%,轨枕沉降下降20%,复合加筋路基的最大应力下降23%,轨枕沉降下降30%,复合加筋效能优于格室加筋. 加筋可以提高路基强度,使路基的上部结构更稳定,降低路基加速度. 浸水后路基各层的应力衰减系数增大,加筋使应力衰减系数和应力竖向扩散深度减小. 加筋可以降低路基孔隙水压力峰值,提高孔隙水压力的消散速度. 浸水后土工布可以保持道砟层性能,减轻道砟污化.

关键词: 浸水重载铁路加筋路基应力加速度沉降孔隙水压力    
Abstract:

The dynamic load effect of different axle heavy train was simulated by indoor model experiment in order to solve the problem that the roadbed performance of heavy haul railway decreased after wetting, which affected the safety of train running. The dynamic characteristics and long-term stability of reinforced roadbed of heavy haul railway before and after soaking were analyzed. Results show that the stress, settlement and acceleration of the plain soil roadbed increase significantly after soaking. The maximum stress and the settlement of sleeper decrease by 21% and 20% respectively, the maximum stress of composite reinforced roadbed decreases by 23% , and the settlement of sleeper decreases by 30%. The reinforcement can improve the strength of subgrade, make the superstructure of subgrade more stable and reduce the acceleration of subgrade. The stress attenuation coefficient of each layer of roadbed increases after soaking, and the reinforcement makes the stress attenuation coefficient and the stress vertical diffusion depth decrease. The reinforcement can reduce the peak value of pore water pressure and increase the dissipation rate of pore water pressure. Geotextile can keep the properties of ballast layer and reduce the fouling of ballast layer after soaking.

Key words: water immersion    heavy-loaded railway    reinforced subgrade    stress    acceleration    settlement    pore water pressure
收稿日期: 2023-09-14 出版日期: 2024-10-23
CLC:  TU 239  
基金资助: 国家自然科学基金资助项目(52278347);湖北省基金创新群体资助项目(2024AFA009);湖北省高等学校优秀中青年科技创新团队资助项目(T2023006);湖北工业大学杰出人才基金资助项目(XJ2021000501).
通讯作者: 梅利芳     E-mail: researchmailbox@163.com;meilfhg@163.com
作者简介: 李丽华(1978—),女,教授,从事加筋土、路基工程、环境岩土工程的研究. orcid.org/0000-0001-7688-5552. E-mail:researchmailbox@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李丽华
江曙光
梅利芳
刘一鸣

引用本文:

李丽华,江曙光,梅利芳,刘一鸣. 浸水对重载铁路加筋路基动力特性的影响[J]. 浙江大学学报(工学版), 2024, 58(11): 2364-2375.

Lihua LI,Shuguang JIANG,Lifang MEI,Yiming LIU. Influence of water immersion on dynamic characteristics of heavy-haul railway reinforced subgrade. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2364-2375.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.018        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2364

图 1  交通荷载模型的试验系统
加筋材料成分A/(g·m?2D/mm$ {F}_{1} $/kNL/%
无纺土工织物聚丙烯500±201≥3.230~100
表 1  土工布工程的参数
图 2  道砟级配曲线
图 3  模型及传感器布置图
图 4  加筋材料的铺设位置
T/tv/(km·h?1)$ {F}_{2} $/kN$ {F}_{3} $/kNf/Hz
23807152[17]
25801020
27801225
30801530
表 2  加载参数汇总
组别加载载重/t是否加筋是否浸水v/(km·h?1)
U依次施加23、25、27、30 t,每级5万次80
U-G土工格室80
U-G-T土工格室+土工布80
S80
S-G土工格室80
S-G-T土工格室+土工布80
表 3  列车荷载加载的试验方案
数据来源σ1/kPa
T = 23 tT = 25 tT = 27 tT = 30 t
本文缩尺模型50.855.965.584.5
Boussinesq理论解[20]73.982.7(28t)88.6
大秦线大同-阳原段[21]52.2
大秦线朔黄线[22]42.4
表 4  路基应力峰值的对比
图 5  不同轴重下路基动应力的横向分布
图 6  不同轴重下路基各个位置沉降的横向分布
图 7  不同轴重下路基各位置加速度峰值的横向分布
图 8  不同轴重下各项数据的峰值变化
图 9  不同轴重下各路基应力的纵向分布
图 10  不同轴重下各路基动应力衰减系数
图 11  路基沉降随加载次数的变化曲线
图 12  浸水后在路基中铺设土工布前、后的对比
图 13  孔隙水压力随加载次数的变化曲线
1 翟婉明 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992, 14 (3): 10- 21
ZHAI Wanming A unified model of the vehicle-track vertical system and its coupling dynamics principle[J]. Journal of the China Railway Society, 1992, 14 (3): 10- 21
doi: 10.3321/j.issn:1001-8360.1992.03.002
2 薛富春, 聂如松 高速列车荷载作用下无砟轨道-路基-地基精细化有限元模型与验证[J]. 铁道科学与工程学报, 2023, 20 (6): 1951- 1962
XUE Fuchun, NIE Rusong Elaborate finite element model and validation for ballastless track-subgrade-foundation under high-speed train loads[J]. Journal of Railway Science and Engineering, 2023, 20 (6): 1951- 1962
3 ZHU Z Y, LING X Z, CHEN S J, et al Analysis of dynamic compressive stress induced by passing trains in permafrost subgrade along Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2011, 65 (3): 465- 473
doi: 10.1016/j.coldregions.2010.10.011
4 石熊 高速铁路路基动力累积变形模型试验研究[J]. 铁道科学与工程学报, 2020, 17 (6): 1346- 1355
SHI Xiong Experimental study on the dynamic accumulation deformation model of high-speed railway subgrade[J]. Journal of Railway Science and Engineering, 2020, 17 (6): 1346- 1355
5 娄霜 模拟路基动力响应的原位激振试验研究[J]. 岩石力学与工程学报, 2020, 39 (3): 629- 636
LOU Shuang In situ excitation test of simulated subgrade dynamic response[J]. Chinese Journal of Rock mechanics and Engineering, 2020, 39 (3): 629- 636
6 张严, 刘德仁, 王旭, 等 中兰铁路深厚黄土场地浸水地表变形规律研究[J]. 铁道科学与工程学报, 2022, 19 (9): 2461- 2469
ZHANG Yan, LIU Deren, WANG Xu, et al Study on deformation law of submerged surface in deep loess site of Zhongwei-Lanzhou Railway[J]. Journal of Railway Science and Engineering, 2022, 19 (9): 2461- 2469
7 王亮亮, 杨果林, 房以河, 等 高速铁路膨胀土路堑全封闭基床动力特性现场试验[J]. 岩土工程学报, 2014, 36 (4): 640- 645
WANG Liangliang, YANG Guolin, FANG Yihe, et al In-situ tests on dynamic character of fully-enclosed cutting subgrade of high-speed railways in expansive soil areas[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 640- 645
doi: 10.11779/CJGE201404007
8 商拥辉, 徐林荣, 蔡雨, 等 重载铁路循环动载下水泥改良膨胀土路基动力特性[J]. 中国铁道科学, 2019, 40 (6): 19- 29
SHANG Yonghui, XU Linrong, CAI Yu, et al Dynamic characteristics of cement improved expansion soil subgrade under the cyclic dynamic load of heavy-load railway[J]. China Railway Science, 2019, 40 (6): 19- 29
9 SWETA K, HUSSAINI S K K Effect of geogrid on deformation response and resilient modulus of railroad ballast under cyclic loading[J]. Construction and Building Materials, 2020, 26 (4): 501- 514
10 CHAWLA S, SHAHU J T, KUMAR S Analysis of cyclic deformation and post-cyclic strength of reinforced railway tracks on soft subgrade[J]. Transportation Geotechnics, 2021, 28 (3): 1212- 1224
11 李丽华, 李俊鹏, 陈智, 等 加筋建筑垃圾土地基模型试验[J]. 中国科技论文, 2021, 16 (2): 158- 163
LI Lihua, LI Junpeng, CHEN Zhi, et al Land base model experiment of reinforced construction waste[J]. China Science Paper, 2021, 16 (2): 158- 163
doi: 10.3969/j.issn.2095-2783.2021.02.006
12 李丽华, 曹毓, 刘巨强, 等 不同加筋方式下碎石桩复合地基承载性能试验研究[J]. 岩石力学与工程学报, 2023, 42 (12): 3085- 3094
LI Lihua, CAO Yu, LIU Juqiang, et al Experimental study on load bearing performance of stone columns under different reinforcement methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (12): 3085- 3094
13 国家铁路局. 铁路路基设计规范: TB10001-2016 [S]. 北京: 中国铁道出版社, 2015.
14 李丽华, 康浩然, 张鑫, 等. 加筋土石混合体动力特性[EB/OL]. (2023-06-13)[2023-09-14]. https://doi.org/10.13229/j.cnki.jdxbgxb.20221604.
15 SOWMIYA L S, SHAHU J T, GUPTA K K Stresses and displacements in rein-forced tracks[J]. Ground Improvement, 2013, 167 (1): 47- 59
16 国家铁路局. 重载铁路设计规范: TB10625-2017[S]. 北京: 中国铁道出版社, 2017.
17 冷伍明, 梅慧浩, 聂如松, 等 重载铁路路基足尺模型试验研究[J]. 振动与冲击, 2018, 37 (4): 1- 6
LENG Wuming, MEI Huihao, NIE Rusong, et al Experimental study on the foot ruler model of heavy-haul railway subgrade[J]. Journal of Vibration and Shock, 2018, 37 (4): 1- 6
18 ISHIKAWA T, SEKINE E, MIURA S Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal, 2011, 48 (5): 691- 703
doi: 10.1139/t10-099
19 HASNAYN M M, MCCARTER W J, WOODWARD P K, et al Railway subgrade performance after repeated flooding: large-scale laboratory testing[J]. Transportation Geotechnics, 2020, 23 (3): 1001- 1014
20 朔黄铁路发展有限责任公司. 重载铁路运行条件下路基快速加固指南[M]. 北京: 中国铁道出版社, 2015.
21 赵欣. 大秦线重载铁路路基质量评估理论与方法的研究[D]. 北京: 北京交通大学, 2011.
ZHAO Xin. Research on the theory and method of quality assessment of heavy-haul railway subgrade in Daqin Line [D]. Beijing: Beijing Jiaotong University, 2011.
22 薛继连. 重载铁路路基状态检测与强化技术[M]. 北京: 科学出版社, 2014.
23 BIAN X C, JIANG H G, CHEN Y M Accumulative deformation in railway track induced by high-speed traffic loading of the trains[J]. Earthquake Engineering and Engineering Vibration, 2010, 9 (3): 319- 326
doi: 10.1007/s11803-010-0016-2
24 COELHO B Z, HICKS M A Numerical analysis of railway transition zones in soft soil[J]. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2016, 230 (6): 1601- 1613
25 ZHANG C L, JIANG G L, BUZZI O, et al Full-scale model testing on the dynamic behaviour of weathered red muds-tone subgrade under railway cyclic loading[J]. Soils and Foundations, 2019, 52 (2): 296- 315
26 段君义, 杨果林, 刘洋, 等 浸水对无砟轨道膨胀土路基力学行为与变形特征的影响[J]. 铁道学报, 2022, 44 (4): 19- 26
DUAN Junyi, YANG Guolin, LOU Yang, et al Effect of water immersion on mechanical behavior and deformation characteristics of ballastless track expansion soil[J]. Journal of the China Railway Society, 2022, 44 (4): 19- 26
doi: 10.3969/j.issn.1001-8360.2022.04.003
27 ARIVALAGAN J, RUJIKIATKAMJORN C, INDRARATNA B, et al The role of geosynthetics in reducing the fluidisation potential of soft subgrade under cyclic loading[J]. Geotextiles and Geomembranes, 2021, 49 (5): 1324- 1338
doi: 10.1016/j.geotexmem.2021.05.004
28 KONG X H, JIANG G L, LI A H, et al Analysis of dynamic characteristics of railway subgrade based on three-dimensional numerical simulation[J]. Journal of Southwest Jiaotong University, 2014, 49 (3): 406- 411
29 ZHANG Chonglei, JIANG Guanlu Full-scale model testing of the dynamic response of lime-stabilized weathered red mudstone subgrade under railway excitation[J]. Soil Dynamics and Earthquake Engineering, 2019, 130 (7): 1220- 1233
30 冷伍明, 李亚峰, 聂如松, 等 高速铁路无砟轨道路基翻浆模型试验[J]. 哈尔滨工业大学学报, 2021, 53 (3): 18- 26
LENG Wuming, LI Yafeng, NIE Rusong, et al Model test of subgrade mud-pumping of ballastless track for high speed railway[J]. Journal of Harbin Institute of Technology, 2021, 53 (3): 18- 26
doi: 10.11918/202001060
[1] 姚言,应宏伟,王奎华,朱成伟,张昌桔,李冰河. 临近既有河道的隧道掘进引起的地表沉降[J]. 浙江大学学报(工学版), 2024, 58(9): 1886-1891.
[2] 彭仁竹,李素贞. 基于化力模型的供水钢管内腐蚀力学性能评估[J]. 浙江大学学报(工学版), 2024, 58(8): 1681-1690.
[3] 王楚鑫,王迎超,杨继光,樊夏敏,张政. 基于犹豫模糊语言模型的高铁地面沉降风险区划[J]. 浙江大学学报(工学版), 2024, 58(8): 1691-1703.
[4] 樊志伟,贾凯,张雷,邹风山,杜振军,刘明敏. 基于同步动态优化的移动机器人最优速度规划[J]. 浙江大学学报(工学版), 2024, 58(8): 1556-1564.
[5] 陈卓杰,周佳锦,陈伟乐,刘健,龚晓南. 深中通道沉管隧道深层水泥搅拌桩复合地基沉降计算分析[J]. 浙江大学学报(工学版), 2024, 58(7): 1397-1406.
[6] 朱佩云,李晓章,余明明,谢旭. 剪力滞对CFRP板-钢梁加固界面应力的影响[J]. 浙江大学学报(工学版), 2024, 58(5): 1020-1028.
[7] 陈加浩,李俊超,朱斌,卢强,汪玉冰,管龙华,赵凤奎. 干砂地基初始应力对爆炸波传播影响的模型试验[J]. 浙江大学学报(工学版), 2024, 58(3): 579-588.
[8] 金俊超,景来红,杨风威,宋志宇,尚朋阳. 脆塑性迭代逼近算法的改进[J]. 浙江大学学报(工学版), 2023, 57(9): 1706-1717.
[9] 栗杨,白彬亨,莫日格吉勒,赵鑫,温泽峰,王卓. 重载曲线缓和段钢轨滚动接触疲劳机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1775-1784.
[10] 余思臻,漆天奇,王桥,程勇刚,周伟,常晓林. 混凝土热-水-化-干湿应变多场耦合模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1585-1596.
[11] 占斯宁,袁栋栋,林永钢,张仪萍,周永潮,张土乔. 微生物作用下含有机质沉积物起动的定量研究[J]. 浙江大学学报(工学版), 2023, 57(10): 2126-2132.
[12] 赵天浩,郑建靖,凌靖华,施昌宇,凌道盛. 离心超重力环境下流体中物体浮力与运动[J]. 浙江大学学报(工学版), 2023, 57(1): 81-91.
[13] 王杉杉,高明,石健将. 双Buck-Boost集成DAB型三端口直流变换器电流应力优化[J]. 浙江大学学报(工学版), 2022, 56(7): 1425-1435, 1472.
[14] 陈伟航,罗强,王腾飞,蒋良潍,张良. 基于Bi-LSTM的非等时距路基工后沉降滚动预测[J]. 浙江大学学报(工学版), 2022, 56(4): 683-691.
[15] 杜永潇,卫军,孙晓立. 预应力混凝土梁自振频率的疲劳演变[J]. 浙江大学学报(工学版), 2022, 56(10): 2007-2018.