Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 579-588    DOI: 10.3785/j.issn.1008-973X.2024.03.015
土木工程、交通工程     
干砂地基初始应力对爆炸波传播影响的模型试验
陈加浩1,2(),李俊超1,2,*(),朱斌1,2,卢强3,汪玉冰1,2,管龙华1,2,赵凤奎1,2
1. 浙江大学 超重力研究中心,浙江 杭州 310058
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
3. 西北核技术研究所 强脉冲辐射环境模拟与效应全国重点实验室,陕西 西安 710024
Model test on influence of initial stress on blast wave propagation in dry sand foundation
Jiahao CHEN1,2(),Junchao LI1,2,*(),Bin ZHU1,2,Qiang LU3,Yubing WANG1,2,Longhua GUAN1,2,Fengkui ZHAO1,2
1. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
3. National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China
 全文: PDF(1996 KB)   HTML
摘要:

为了研究砂土地基初始应力对爆炸波压力峰值、上升时间、传播速度和初始应力动态卸载等传播规律的影响,开展多组干砂地基常重力和超重力爆炸模型试验. 试验结果表明,初始自重应力会抑制爆炸波近区压力峰值的增长,而对远区的影响较小. 初始应力的增加使得爆炸波上升时间更长,更易由冲击波衰减为弹塑性波,并使得爆炸波波速增大. 超重力试验通过还原砂土地基的原型自重应力,能够模拟爆炸荷载诱发砂土地基初始应力动态卸载的过程,形成爆炸压力和土体初始应力动态卸载拉应力的耦合波,动态卸载拉应力持续时间更长. 与爆炸波压应力的比冲量相比,初始应力动态卸载拉应力的比冲量随着传播距离的增加逐渐成为爆炸能量的主要部分,其产生的破坏作用不可忽视.

关键词: 地下爆炸离心模型试验干砂爆炸波波速应力动态卸载    
Abstract:

Several sets of blast model tests were conducted on dry sandy foundation with both normal gravity and supergravity, in order to investigate the effects of initial stress of sandy soil on the propagation characteristics of blast waves, such as peak pressure, rise time, propagation velocity, and dynamic unloading of initial stress. Experimental results showed that the initial self-weight stress inhibited the growth of the peak pressure of the blast wave in the near zone and had little effect on the far zone. The increase of initial stress made the rise time of the blast wave longer and more susceptible to attenuation from the shock wave into the elastic-plastic wave, and the propagation velocity of the blast wave was increased. The supergravity test could simulate the process of dynamic unloading caused by the blast load by restoring the original self-weight stress of the sandy soil, forming coupling wave of explosion pressure and soil initial stress dynamic unloading tensile stress. The dynamic unloading tensile stress lasted longer. The dynamic unloading tensile stress specific impulse magnitude gradually became the main part of the explosion energy with the increase of propagation distance, as compared to the specific impulse magnitude of the blast pressure. The damage effect caused by the dynamic unloading tensile stress specific impulse magnitude cannot be ignored.

Key words: underground explosion    centrifugal model test    dry sand    blast wave velocity    dynamic stress unloading
收稿日期: 2023-03-09 出版日期: 2024-03-05
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(51988101).
通讯作者: 李俊超     E-mail: 22012178@zju.edu.cn;lijunchao@zju.edu.cn
作者简介: 陈加浩(1997—),男,硕士生,从事岩土体中爆炸效应及其超重力模拟研究. orcid.org/0009-0001-4326-9865. E-mail:22012178@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈加浩
李俊超
朱斌
卢强
汪玉冰
管龙华
赵凤奎

引用本文:

陈加浩,李俊超,朱斌,卢强,汪玉冰,管龙华,赵凤奎. 干砂地基初始应力对爆炸波传播影响的模型试验[J]. 浙江大学学报(工学版), 2024, 58(3): 579-588.

Jiahao CHEN,Junchao LI,Bin ZHU,Qiang LU,Yubing WANG,Longhua GUAN,Fengkui ZHAO. Model test on influence of initial stress on blast wave propagation in dry sand foundation. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 579-588.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/579

图 1  爆源起爆过程的等效电路
图 2  ISO标准砂颗粒级配
图 3  模型箱吸波材料
试验
编号
Gρ/(kg·m?3Dr/%W/gH/m(H/W1/3)/
(m·kg?1/3
σz/kPad/m
爆源平面爆源下方
GE-11g180372.80.80.101.081.770.08、0.10、0.12、
0.14、0.19、0.25
0.08、0.12、
0.16、0.22
GE-21g179370.30.80.313.335.450.08、0.10、0.12、0.14、
0.16、0.19、0.22、0.25
0.10、0.16、
0.22
CE-1100g180072.10.80.101.08176.400.08、0.10、0.12、
0.14、0.19、0.25
0.08、0.12、
0.16、0.22
CE-2100g181676.10.80.313.33551.700.08、0.10、0.12、0.14、
0.16、0.19、0.22、0.25
0.10、0.16、
0.22
表 1  爆炸物理模型试验工况
图 4  土压力传感器布置位置
图 5  爆炸弹坑抛掷过程
图 6  爆炸土压力时程曲线
图 7  爆炸波压力峰值随比例距离的衰减规律
图 8  波阵面与压力峰值到达时刻
图 9  爆炸波压力峰值上升时间与传播距离关系
图 10  压应力随相对体积的变化
图 11  压力峰值传播速度
图 12  常重力试验中GE-1和GE-2工况到达时间-传播距离关系
图 13  超重力试验中CE-1和CE-2工况到达时间-传播距离关系
图 14  爆炸波波速与压力峰值变化关系
试验
工况
Ns/(m·s?1)Np/(m·s?1)c/(m·s?1)dc/W1/3/(m·kg?1/3)σc/MPatrc/ms
GE-1188~259
GE-2102~350
CE-1185~329185~2072431.291.270.185
CE-2260~528260~2964861.510.430.242
表 2  爆炸波传播速度与冲击波衰减临界特征值
图 15  爆源下方应力时程曲线
图 16  一维离散小波变换
图 17  爆炸诱发的初始应力动态卸载波
工况(d/W1/3)/(m·kg?1/3)IΙ/(MPa·ms)PRΙ/%IΙΙ/(MPa·ms)PRΙΙ/%IΙΙΙ/(MPa·ms)PRΙΙΙ/%Is/(MPa·ms)
CE-10.860.48461.30.0010.10.30438.50.790
1.720.22834.00.0040.60.43965.40.672
2.360.06917.20.0061.50.32881.30.403
CE-21.080.16025.30.26541.90.20832.90.633
1.720.24729.10.0475.50.55565.40.848
2.360.05611.80.0265.50.39582.70.478
表 3  爆炸波与初始应力动态卸载耦合作用下比冲量大小与占比
1 王涛, 余文力, 王少龙, 等 国外钻地武器的现状与发展趋势[J]. 导弹与航天运载技术, 2005, (5): 51- 56
WANG Tao, YU Wenli, WANG Shaolong, et al Present status and tendency of foreign earth-penetrating weapons[J]. Missiles and Space Vehicles, 2005, (5): 51- 56
2 HARDIN B, BLACK W L Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94 (2): 353- 369
doi: 10.1061/JSFEAQ.0001100
3 马冬冬, 汪鑫鹏, 马芹永, 等 考虑围压效应的冻结砂土动态本构模型研究[J]. 爆炸与冲击, 2023, 1 (1): 1- 10
MA Dongdong, WANG Xinpeng, MA Qinyong, et al Study on the dynamic constitutive model of frozen sandy soil considering confining pressure effect[J]. Explosion and Shock Waves, 2023, 1 (1): 1- 10
4 COOK N Seismicity associated with mining[J]. Engineering Geology, 1976, 10 (2): 99- 122
5 LU W, YANG J, YAN P, et al Dynamic response of rock mass induced by the transient release of in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129- 141
doi: 10.1016/j.ijrmms.2012.05.001
6 FAN Y, ZHENG J W, CUI X Z, et al Damage zones induced by in situ stress unloading during excavation of diversion tunnels for the Jinping II hydropower project[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 4689- 4715
doi: 10.1007/s10064-021-02172-y
7 US Army Engineers Waterways Experimental Station. Fundamentals of protective design for conventional weapons: TM5-855-1 [R]. Washington DC: Department of the Army, 1986: 54.
8 施鹏, 辛凯, 杨秀敏, 等 土中装药不同埋深爆炸试验研究[J]. 工程力学, 2006, (12): 171- 174
SHI peng, XIN kai, YANG Xiumin, et al Experimental study of explosion with different burial depths in soil[J]. Engineering Mechanics, 2006, (12): 171- 174
doi: 10.3969/j.issn.1000-4750.2006.12.030
9 ZULKIFLI A H, ANIZA I, NORAZMAN M N Feasibility of a small-scale test apparatus in measuring blast intensity of shallow buried charge detonation in in-situ soil[J]. Science and Technology of Energetic Materials, 2019, 80 (6): 229- 236
10 RIGBY S E, FAY S D, TYAS A, et al Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils[J]. Shock Waves, 2017, (2): 1- 14
11 VIVEK, PADMANABHA, SITHARAM, et al Laboratory scale investigation of stress wave propagation and vibrational characteristics in sand when subjected to air-blast loading[J]. International Journal of Impact Engineering, 2018, 114: 169- 181
doi: 10.1016/j.ijimpeng.2018.01.003
12 赵章泳, 王明洋, 邱艳宇, 等 爆炸波在非饱和钙质砂中的传播规律[J]. 爆炸与冲击, 2020, 40 (8): 76- 91
ZHAO Zhangyong, WANG Mingyang, QIU Yanyu, et al The propagation laws of blast wave in unsaturated calcareous sand[J]. Explosion and Shock Waves, 2020, 40 (8): 76- 91
13 郭东, 侯晓峰, 于潇, 等 爆炸荷载在砂土中衰减规律的试验研究[J]. 防护工程, 2022, 44 (3): 8- 13
GUO dong, HOU Xiaofeng, YU Xiao, et al Experimental study on the attenuation of blast load in sands[J]. Protective Engineering, 2022, 44 (3): 8- 13
14 赵振宇, 周贻来, 任建伟, 等 浅埋炸药爆炸形貌及其冲击作用效应[J]. 爆炸与冲击, 2022, 42 (4): 52- 64
ZHAO Zhenyu, ZHOU Yilai, REN Jianwei, et al Explosion morphology and impacting effects of shallow-buried explosives[J]. Explosion and Shock Waves, 2022, 42 (4): 52- 64
15 潘亚豪, 宗周红, 钱海敏, 等 钙质砂介质中爆炸波传播规律的试验研究[J]. 爆炸与冲击, 2023, 1- 15
PAN Yahao, ZONG Zhouhong, QIAN Haimin, et al Experiment study on blast wave propagation in calcareous sand[J]. Explosion and Shock Waves, 2023, 1- 15
16 SCHMIDT R M, HOLAPPLE K A Theory and experiments on centrifuge cratering[J]. Journal of Geophysical Research, 1980, 85 (1): 235- 248
17 WALSH A J, CHARLIE W A. Stress wave propagation in unsaturated sands-volume 1: centrifuge modeling [R]. Fort Collins: Colorado State University, 1983.
18 HANSEN C Buried explosive-induced blast characterization by geotechnical centrifuge modeling[J]. Dynamic Behavior Mater, 2016, 2: 306- 325
doi: 10.1007/s40870-016-0067-1
19 范一锴, 陈祖煜, 梁向前, 等 砂中爆炸成坑的离心模型试验分析方法比较[J]. 岩石力学与工程学报, 2011, 30 (Suppl. 2): 4123- 4128
FAN Yikai, CHEN Zuyu, LIANG Xiangqian, et al Comparison of three methods for geotechnical centrifuge model tests of explosion cratering in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (Suppl. 2): 4123- 4128
20 马立秋, 张建民 黏性土爆炸成坑和地冲击传播的离心模型试验研究[J]. 岩石力学与工程学报, 2011, 30 (Suppl.1): 3172- 3178
MA Liqiu, ZHANG Jianmin Centrifugal model testing study of explosion-induced craters and propagation of ground shock in clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (Suppl.1): 3172- 3178
21 中华人民共和国行业标准编写组. 小量火药、炸药及其制品危险性建筑设计安全规范: WJ 2470-1997 [S]. 北京: 兵器工业出版社, 1997.
22 汪斌, 张远平, 王彦平 一种水中爆炸气泡脉动实验研究方法[J]. 高压物理学报, 2009, 23 (5): 332- 337
WANG Bin, ZHANG Yuanping, WANG Yanping An experimental method of studying underwater explosion bubble oscillation[J]. Chinese Journal of High Pressure Physics, 2009, 23 (5): 332- 337
23 ZULKIFLI A H, ANIZA I, NORAZMAN M N, et al Detonation effects of shallow buried explosive in sandy soil on target plate acceleration in a small-scale blast test[J]. Matec Web of Conferences, 2018, 192 (4): 02028
24 亨利奇. 爆炸动力学及其应用 [M]. 熊建国,等,译. 北京: 科学出版社, 1987.
25 赵章泳, 邱艳宇, 王明洋, 等 非饱和钙质砂中平面爆炸波传播试验研究[J]. 防护工程, 2017, (3): 22- 28
ZHAO Zhangyong, QIU Yanyu, WANG Mingyang, et al Experimental study on plane explosive wave propagation in unsaturated calcareous sand[J]. Protective Engineering, 2017, (3): 22- 28
26 GEFKEN P R, FLORENCE A L, SANAI M. Spherical waves in saturated sand [R]. Menlo Park: SRI International, 1996.
27 严鹏, 卢文波, 周创兵 非均匀应力场中爆破开挖时地应力动态卸载所诱发的振动研究[J]. 岩石力学与工程学报, 2008, (4): 773- 781
YAN Peng, LU Wenbo, ZHOU Chuangbing Research on vibration induced by dynamic unloading of in-situ stress in asymmetrical geostress field[J]. Chinese Journal of High Pressure Physics, 2008, (4): 773- 781
28 杨润强, 严鹏, 王高辉, 等 地应力水平对深埋隧洞爆破振动频谱结构的影响[J]. 爆炸与冲击, 2019, 39 (5): 118- 129
YANG Runqiang, YAN Peng, WANG Gaohui, et al Effect of in-situ stress level on frequency spectrum of blasting vibration in a deep-buried tunnel[J]. Explosion and Shock Waves, 2019, 39 (5): 118- 129
29 杨建华, 卢文波, 陈明, 等 深部岩体应力瞬态释放激发微地震机制与识别[J]. 地震学报, 2012, 34 (5): 581- 592
YANG Jianhua, LU Wenbo, CHEN Ming, et al Mechanism and identification of triggered microseism by transient release of in-situ stress in deep rock mass[J]. ACTA Seismologica Sinica, 2012, 34 (5): 581- 592
doi: 10.3969/j.issn.0253-3782.2012.05.001
[1] 张聪,冯忠居,王富春,关云辉,张福强. 基于离心模型试验的近断层单桩水平承载特性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 542-551.
[2] 刘宏扬,罗强,王威龙,李品锋,马宏飞,张东卿. 土工离心模型试验中路堤分层填筑装置的研制[J]. 浙江大学学报(工学版), 2022, 56(8): 1504-1513.
[3] 徐日庆, 李昕睿, 朱剑锋. 刚性挡土墙平动模式下中间被动土压力的计算[J]. J4, 2010, 44(10): 2005-2009.