Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 542-551    DOI: 10.3785/j.issn.1008-973X.2023.03.012
土木工程     
基于离心模型试验的近断层单桩水平承载特性研究
张聪1(),冯忠居1,*(),王富春1,关云辉2,张福强3
1. 长安大学 公路学院,陕西 西安 710064
2. 陕西建工机械施工集团有限公司,陕西 西安 710064
3. 海南省交通运输厅,海南 海口 570204
Horizontal bearing characteristics of near-fault single pile based on centrifugal model test
Cong ZHANG1(),Zhong-ju FENG1,*(),Fu-chun WANG1,Yun-hui GUAN2,Fu-qiang ZHANG3
1. Highway School, Chang’an University, Xi’an 710064, China
2. SCEGC Mechanized Construction Group Limited Company, Xi’an 710064, China
3. Hainan Province Transportation Hall, Haikou 570204, China
 全文: PDF(2339 KB)   HTML
摘要:

为了探明断层发育区桥梁单桩的水平承载特性及受力机理,通过土工离心模型试验,选取断层与桩基水平距离、断层埋深变化参数为变量,研究近断层桥梁单桩水平极限承载力、桩侧土抗力、桩身弯矩及桩身剪力变化规律. 试验结果表明:断层的存在抑制了桩侧土抗力的发挥,进而影响单桩水平承载特性. 当断层与桩基水平距离由1 倍桩径增加至5 倍桩径时,断层两侧桩基水平极限承载力影响度为1.38%~61.47%,桩身弯矩逐渐减小且衰减较快,桩身剪力逐渐减小;当断层埋深由0 cm减至28 cm时,桩基水平极限承载力影响度为13.07%~51.60%. 近断层单桩水平承载力设计时,可以根据桩侧岩土体受断层影响范围,确定断层与桩基水平距离临界值与合理桩长.

关键词: 桩基础单桩断层离心模型试验水平承载特性    
Abstract:

In order to explore the horizontal bearing characteristics and stress mechanism of bridge pile foundations in fault development areas, through the geotechnical centrifugal model test, the selected variables were horizontal distance between the fault and the pile foundation, and the buried depth of the fault . The variation rules of horizontal ultimate bearing capacity, pile side soil resistance, pile bending moment, and pile shear force of a single pile near-fault bridge were studied. Test results show that the existence of faults inhibits the development of soil resistance on the side of the pile, and affects the horizontal bearing characteristics of a single pile. When the horizontal distance between the fault and the pile foundation increased from 1 to 5 times the pile diameter, the influence degree of the horizontal ultimate bearing capacity of the single pile on both sides of the fault was 1.38%-61.47%. The bending moment of the pile decreased gradually and attenuated rapidly, and the shearing force of the pile decreased gradually. When the buried depth of the fault was reduced from 0 cm to 28 cm, the influence degree of the horizontal ultimate bearing capacity of the single pile on both sides of the fault was 13.07%-51.60%. In the design of horizontal bearing capacity of the single pile near-fault, the critical value of the horizontal distance between fault and pile foundation and reasonable pile length can be determined according to the range of rock and soil affected by the fault.

Key words: pile foundation    single pile    fault    centrifugal model test    horizontal bearing characteristics
收稿日期: 2022-03-18 出版日期: 2023-03-31
CLC:  U 433.15  
基金资助: 国家自然科学基金资助项目(51708040);中央高校基本科研业务费专项资金资助项目(300102218115);福建省交通运输科技项目(JXFZ2020-XM0189);海南省交通科技项目(HNZXY2015-045R)
通讯作者: 冯忠居     E-mail: zhangcong@chd.edu.cn;ysf@gl.chd.edu.cn
作者简介: 张聪(1994—),男,博士生,从事岩土工程研究. orcid.org/0000-0001-9687-4770. E-mail: zhangcong@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张聪
冯忠居
王富春
关云辉
张福强

引用本文:

张聪,冯忠居,王富春,关云辉,张福强. 基于离心模型试验的近断层单桩水平承载特性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 542-551.

Cong ZHANG,Zhong-ju FENG,Fu-chun WANG,Yun-hui GUAN,Fu-qiang ZHANG. Horizontal bearing characteristics of near-fault single pile based on centrifugal model test. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 542-551.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.012        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/542

图 1  桩基与断层相对位置关系
图 2  离心试验机及模型箱
物理量 量纲 数值
原型 离心模型
尺寸l L 1 1/n
水的质量分数w 1 1 1
密度ρ ML?3 1 1
应变ε 1 1 1
应力σ ML?1T?2 1 1
质量m M 1 1/n3
F MLT?2 1 1/n2
土抗力p ML?1T?2 1 1/n
容重γ ML?2T?2 1 n
加速度a LT?2 1 n
时间t T 1 1/n2
角度α 1 1 1
变形u L 1 1/n
表 1  近断层单桩水平承载特性离心模型试验中物理量的相似关系
图 3  模型桩的抗压强度测试
模型土 ρ/(kg·m?3 E/MPa φ/(°) C/kPa
粉质黏土 18.00 28 20 26
持力层 25.00 56
表 2  近断层单桩水平承载特性离心模型试验的土层参数
图 4  模型示意图及测试元件布设
类型 S/cm h/cm
对比桩 无断层 0
试验桩 1D、2D、3D、4D、5D 0
试验桩 3D 0、24、28、32
表 3  近断层单桩水平承载特性离心模型试验的工况
图 5  断层与桩基不同水平距离工况下的桩基荷载-位移曲线
图 6  断层与桩基不同水平距离工况下的桩基水平极限承载力及影响度变化
图 7  断层与桩基不同水平距离工况下的桩侧土抗力变化
图 8  断层与桩基不同水平距离工况下的桩身弯矩变化
图 9  断层与桩基不同水平距离工况下的桩身剪力变化
图 10  不同断层埋深工况下的桩基荷载-位移曲线
图 11  不同断层埋深工况下的桩基水平极限承载力及影响度变化
图 12  不同断层埋深工况下的桩侧土抗力变化
图 13  不同断层埋深工况下的桩身弯矩变化
图 14  不同断层埋深工况下的桩身剪力变化
1 冯忠居. 特殊地区基础工程[M]. 北京: 人民交通出版社, 2010 .
2 冯忠居. 基础工程[M]. 北京: 人民交通出版社, 2001.
3 FENG Z J, HUO J W, HU H B, et al Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021: 8884396
4 ZHANG C, FENG Z J, GUAN Y H, et al Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, 2022: 5074513
5 DONG Y X, FENG Z J, HU H B, et al The horizontal bearing capacity of composite concrete-filled steel tube piles[J]. Advances in Civil Engineering, 2020, 2020: 3241602
6 DONG Y X, FENG Z J, HE J B, et al Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019, 2019: 9726013
7 FENG Z J, HU H B, DONG Y X, et al Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019, 9 (14): 2874
doi: 10.3390/app9142874
8 冯忠居, 胡海波, 贾明晖, 等 钢管埋深对钢管混凝土复合桩竖向承载特性的影响[J]. 土木工程学报, 2019, 52 (Suppl.2): 110- 116
FENG Zhong-ju, HU Hai-bo, JIA Ming-hui, et al Influence of pipe bury depth on vertical bearing characteristics of concrete filled steel tubular composite pile[J]. China Civil Engineering Journal, 2019, 52 (Suppl.2): 110- 116
9 BRAY J D. Designing buildings to accommodate earthquake surface fault rupture [C]// ATC and SEI 2009 Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco: ASCE, 2009: 1269-1280.
10 PARK S W, GHASEMI H, SHEN J, et al Simulation of the seismic performance of the Bolu viaduct subjected to near-fault ground motions[J]. Earthquake Engineering and Structural Dynamics, 2004, 33 (13): 1249- 1270
doi: 10.1002/eqe.395
11 QU B, GOEL R K. Fault-rupture response spectrum analysis of a four-span curved bridge crossing earthquake fault rupture zones [C]// Structures Congress 2015. Portland: ASCE, 2015: 1810-1818.
12 惠迎新, 王克海 跨断层桥梁地震响应特性研究[J]. 桥梁建设, 2015, 45 (3): 70- 75
HUI Ying-xin, WANG Ke-hai Study of seismic response features of brides crossing faults[J]. Bridge Construction, 2015, 45 (3): 70- 75
13 冯忠居, 张聪, 何静斌, 等 强震作用下群桩基础抗液化性能的振动台试验[J]. 交通运输工程学报, 2021, 21 (4): 72- 83
FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al Shaking table test of liquefaction resistance of group piles under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (4): 72- 83
14 冯忠居, 张聪, 何静斌, 等 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42 (12): 3227- 3237
FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al Shaking table test of time-history response of rock-socketed single pile under strong earthquake[J]. Rock and Soil Mechanics, 2021, 42 (12): 3227- 3237
15 冯忠居, 陈慧芸, 袁枫斌, 等 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19 (2): 36- 48
FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, et al Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action [J]. Journal of Traffic and Transportation Engineering, 2019, 19 (2): 36- 48
doi: 10.3969/j.issn.1671-1637.2019.02.004
16 张聪, 冯忠居, 孟莹莹, 等 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43 (5): 1326- 1334
ZHANG Cong, FENG Zhong-ju, MENG Ying-ying, et al Shaking table test on the difference of dynamic time-history response between the single pile and pile group foundation[J]. Rock and Soil Mechanics, 2022, 43 (5): 1326- 1334
17 冯忠居, 关云辉, 赖德金, 等 强震作用下桩-土-断层非线性动力相互作用特性[J]. 世界地震工程, 2021, 37 (4): 167- 176
FENG Zhong-ju, GUAN Yun-hui, LAI De-jin, et al Nonlinear dynamic interaction characteristics of pile-soil-fault under strong earthquake[J]. Word Earthquake Engineering, 2021, 37 (4): 167- 176
doi: 10.3969/j.issn.1007-6069.2021.04.018
18 冯忠居, 王富春, 张其浪, 等 钢管混凝土复合桩横轴向承载特性离心模型试验研究[J]. 土木工程学报, 2018, 51 (1): 114- 123+128
FENG Zhong-ju, WANG Fu-chun, ZHANG Qi-lang, et al Centrifuge model tests of horizontal bearing characteristics of steel pipe concrete composite pile[J]. China Civil Engineering Journal, 2018, 51 (1): 114- 123+128
19 何静斌, 冯忠居, 董芸秀, 等 强震区桩-土-断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41 (7): 2389- 2400
HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, et al Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area[J]. Rock and Soil Mechanics, 2020, 41 (7): 2389- 2400
20 BRANSBY M F, DAVIES M C, NAHAS A E Centrifuge modelling of normal fault–foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, (6): 585- 605
21 YAO C F, TAKEMURA J, ZHANG J C Centrifuge modeling of single pile-shallow foundation interaction in reverse fault[J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106538
doi: 10.1016/j.soildyn.2020.106538
22 蔡奇鹏, 甘港璐, 吴宏伟, 等 正断层诱发砂土中群桩基础破坏及避让距离研究[J]. 岩土力学, 2019, 40 (3): 1067- 1075+1128
CAI Qi-peng, GAN Gang-lu, NG C W W, et al Study on failure mechanism and setback distance of a pile group in sand subjected to normal faulting[J]. Rock and Soil Mechanics, 2019, 40 (3): 1067- 1075+1128
23 蔡奇鹏, 吴宏伟, 陈星欣, 等 正断层错动诱发单桩破坏及避让距离研究[J]. 岩土工程学报, 2017, 39 (4): 720- 726
CAI Qi-peng, NG C W W, CHEN Xing-xin, et al Failure mechanism and setback distance of single pile subjected to normal faulting[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (4): 720- 726
24 AHMED W, BRANSBY M F Interaction of shallow foundations with reverse faults[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135 (7): 914- 924
doi: 10.1061/(ASCE)GT.1943-5606.0000072
25 SADR A, KONAGAI K, JOHANSSON J, et al. Nonlinear soil-pile group interaction in the vicinity of surface fault ruptures [C]// 13th World Conference on Earthquake Engineering. Vancouver: [s. n.], 2004: 554.
26 DAVOODI M, JAFARI M K, AHMADI F Comparing the performance of vertical and diagonal piles group at the normal fault rupture[J]. Journal of Seismology and Earthquake Engineering, 2014, 16 (2): 103- 110
27 符婉靖, 肖朝昀, 甘港璐, 等 正断层作用下高承台群桩基础的破坏机制数值模拟[J]. 华侨大学学报: 自然科学版, 2020, 41 (2): 156- 163
FU Wan-jing, XIAO Zhao-yun, GAN Gang-lu, et al Numerical simulation of failure mechanism of high-rise pile cap foundation subjected to normal fault[J]. Journal of Huaqiao University: Natural Science, 2020, 41 (2): 156- 163
28 GAZETAS G, PECKER A, FACCIOLI E, et al Preliminary design recommendations for dip-slip fault–foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6: 677- 687
doi: 10.1007/s10518-008-9082-5
29 李瀚源, 李兴高, 马明哲, 等 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报: 工学版, 2022, 56 (4): 631- 639
LI Han-yuan, LI Xing-gao, MA Ming-zhe, et al Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 631- 639
30 冯忠居, 陈锦华, 刘星越, 等 高速公路改扩建旧桥加宽桩基础差异沉降控制离心模型试验[J]. 长安大学学报: 自然科学版, 2022, 42 (2): 1- 9
FENG Zhong-ju, CHEN Jin-hua, LIU Xing-yue, et al Centrifugal model test on different settlement control of widened pile foundation of old bridge in reconstruction and extension of expressway[J]. Journal of Chang’an University: Natural Science Edition, 2022, 42 (2): 1- 9
31 向波, 马建林, 何云勇, 等 小直径钢管排桩加固边坡的离心模型试验[J]. 岩石力学与工程学报, 2012, 31 (Suppl.1): 2644- 2652
XIANG Bo, MA Jian-lin, HE Yun-yong, et al Centrifugal model test of slope reinforced by small-diameter steel pipe row piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (Suppl.1): 2644- 2652
32 王子煜 库车坳陷断层控制下的盐岩塑性流动及对上覆地层构造影响的沙箱模拟[J]. 石油实验地质, 2002, 24 (5): 441- 445
WANG Zi-yu Sandbox simulation of saltrock plastic flow controlled by faults in the Kuche depression of the tarim basin and its influence on overlying stratigraphic structures[J]. Petroleum Geology and Experiment, 2002, 24 (5): 441- 445
doi: 10.3969/j.issn.1001-6112.2002.05.011
33 BRUNE J N, ANOOSHEHPOOR A 浅部软弱层对走滑破裂引起的强地面运动影响的物理模型[J]. 世界地震译丛, 1999, (4): 45- 53
BRUNE J N, ANOOSHEHPOOR A A physical model of the effect of a shallow weak layer on strong ground motion for strike-slip ruptures[J]. Translated World Seismology, 1999, (4): 45- 53
34 龚晓南. 桩基工程手册[M]. 第2版. 北京: 中国建筑工业出版社, 2016.
35 冯忠居, 孟莹莹, 张聪, 等 强震作用下液化场地群桩动力响应及p-y曲线 [J]. 岩土力学, 2022, 43 (5): 1289- 1298
FENG Zhong-ju, MENG Ying-ying, ZHANG Cong, et al Dynamic response and p-y curve of pile group in liquefaction site under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43 (5): 1289- 1298
[1] 李瀚源,李兴高,刘杨,杨益,马明哲. 跨活动断层盾构隧道纵向受力及变形特征[J]. 浙江大学学报(工学版), 2023, 57(2): 340-352.
[2] 刘宏扬,罗强,王威龙,李品锋,马宏飞,张东卿. 土工离心模型试验中路堤分层填筑装置的研制[J]. 浙江大学学报(工学版), 2022, 56(8): 1504-1513.
[3] 赵爽,王奎华,吴君涛. 水平循环荷载下砂土中斜单桩累积变形特性[J]. 浙江大学学报(工学版), 2022, 56(7): 1310-1319.
[4] 李瀚源,李兴高,马明哲,刘浩,杨益. 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 631-639.
[5] 王曌文,周昊,罗佳伟,伍其威,岑可法. 储罐地基材料在熔盐泄露后的导热系数研究[J]. 浙江大学学报(工学版), 2022, 56(1): 137-143.
[6] 席仁强,杜修力,王丕光,许成顺,许坤. 单桩式海上风力机整体化地震反应[J]. 浙江大学学报(工学版), 2021, 55(4): 757-766.
[7] 谢旭,黄文彤,冀龙飞,王天佳. 断层破裂过程对减隔震桥梁地震反应的影响[J]. 浙江大学学报(工学版), 2021, 55(12): 2225-2233.
[8] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[9] 王洪凯, 陈中华, 周纵苇, 李迎辞, 陆佩欧, 王文志, 刘宛予, 于丽娟. 机器学习算法诊断PET/CT纵膈淋巴结性能评估[J]. 浙江大学学报(工学版), 2018, 52(4): 788-797.
[10] 叶居东, 杨贞军, 刘国华, 姚勇. 超高性能混凝土-螺旋钢纤维拉拔力的解析解及实验验证[J]. 浙江大学学报(工学版), 2018, 52(10): 1911-1918.
[11] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953.
[12] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[13] 王奎华, 罗永健, 吴文兵, 吕述晖, 武登辉. 层状地基中考虑桩端应力扩散的单桩沉降计算[J]. J4, 2013, 47(3): 472-479.
[14] 张俊超, 岳茂雄, 刘华锋. 结构先验约束的动态PET图像重建[J]. J4, 2012, 46(6): 961-966.
[15] 闫丹丹 张孝通 朱善安 贺斌. 头部异物两步核磁共振电阻抗成像仿真研究[J]. J4, 2008, 42(4): 661-666.