Please wait a minute...
J4  2012, Vol. 46 Issue (6): 961-966    DOI: 10.3785/j.issn.1008-973X.2012.06.001
张俊超1, 岳茂雄2, 刘华锋1
1. 浙江大学 现代光学仪器国家重点实验室,浙江 杭州 310027; 2. 空气动力研究与
发展中心四所, 四川 绵阳 62100
Dynamic PET image reconstruction with Geometrical structure
prior constraints
ZHANG Jun-chao1, YUE Mao-xiong2, LIU Hua-feng1
1. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China;
2. The Fourth Research Institute,China Aerodynamics Research and Development Center, Mianyang 62100, China
 全文: PDF  HTML

为提高图像质量,提出一种利用其他高质量解剖模板作为先验,引导动态正电子发射断层 (PET) 成像重建的方法.该方法基于状态空间理论体系,将与生理特性相关的解剖模板耦合于状态方程中,并与成像模型相结合构成完善的状态空间方程组,运用具有鲁棒性的H∞滤波法求解,从而构建一种适合于符合计数率低、噪声影响显著的动态PET图像的重建框架.蒙特卡洛模拟实验结果表明,与其他传统方法相比,本方法在能够适应实际动态PET成像中统计特性和系统特性不确定的基础上,进一步抑制了噪声,并保持了图像边缘和细节信息.


In order to improve the image quality,an improved algorithm for dynamic positron emission tomography(PET) image reconstruction was proposed by using segmented anatomical template that provided by other high quality imaging technology. Based on state space theory, a dynamic PET image reconstruction framework for low count rate and high noise environment was formulated with the observation equation of detectors and a modified evolution equation incorporating structural constraint which was generated to guide the reconstruction process, and H∞ filtering principle was employed to solve the above two equations. Compared with other algorithms, experiments conducted by Monte Carlo simulations indicate a persuasive assessment that the proposed strategy was particularly applicable for real-world situations with the uncertainties of system and statistical properties, suppresses noise well, while the boundary information and other details remain clear.

出版日期: 2012-07-24
:  TP 301.6  


通讯作者: 刘华锋,男,教授.     E-mail:
作者简介: 张俊超(1987—),女,硕士生,主要研究方向为医学图像处理.E-mail:
E-mail Alert


张俊超, 岳茂雄, 刘华锋. 结构先验约束的动态PET图像重建[J]. J4, 2012, 46(6): 961-966.

ZHANG Jun-chao, YUE Mao-xiong, LIU Hua-feng. Dynamic PET image reconstruction with Geometrical structure
prior constraints. J4, 2012, 46(6): 961-966.


[1] LEAHY R M, QI J. Statistical approaches in quantitative positron emission tomography [J]. Statistics and Computing. 2000, 102): 147-165.
[2] ZHOU Z, LEAHY R M, MUMCUOGLU E U. A comparative study of the effects of using anatomical priors in PET reconstruction[C]∥Proccedings of The 1993 IEEE Nuclear Science Symposium and Medical Imaging Conference. [S. l.]:IEEE, 1993: 1749-1753.
[3] BOWSHER J E, JOHNSON V E, TURKINGTON T G, et al. Bayesian reconstruction and use of anatomical a priori information for emission tomography[J]. IEEE Transactions on Medical Imaging, 1996, 15(5): 673-686.
[4] RANGARAJAN A, HSIAO I T, GINDI G. A Bayesian joint mixture framework for the integration of anatomical information in functional image reconstruction[J]. Journal of Mathematical Imaging and Vision, 2000, 12(3):  199-217.
[5] JING T, ARMAN R. Bayesian PET image reconstruction incorporating anatofunctional joint entropy[J]. Physics in Medicine and Biology, 2009,54(23): 7063-7075.
[6] AMEYA A, KATHLEEN V, KRISTOF B,et al. Evaluation of different MRIbased anatomical priors for PET brain imaging[C]∥ Nuclear Science Symposium Conference Record NSS/MIC), 2009 IEEE. Orlando, FL:IEEE, 2009: 2774-2780.
[7] COBELLI C, FOSTER D, TOFFOLO G. Tracer kinetics in biomedical research [M]. New York :Kluwer Academic/Plenum Publishers, 2000.
[8] LIU H, TIAN Y, SHI P. PET image reconstruction: a robust state space approach [C]∥ Information Processing in Medical Imaging IPMI’05). [S. l.]: Springer, 2005: 197-209.
[9] HOETJES N J, VAN VELDEN P H P, HOEKSTRA O S, et al. Partial volume correction strategies for quantitative FDG PET in oncology[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37(9): 1679-1687.
[10] VAN LEEMPUT K, MAES F, VANDERMEULEN D, et al. Automated modelbased tissue classication of MR images of the brain[J]. IEEE Transactions on Medical Imaging, 1999, 18(10): 1162-1175.
[11] TAI Y C, LIN K P, HOH C K, et al. Utilization of 3D elastic transformation in the registration of chest xray CT and whole body PET [J]. IEEE Transactions on Nuclear Science, 1997, 44(4): 1606-1612.
[12] TONG S, SHI P. Tracer kinetics guided dynamic PET reconstruction [C]∥ Information Processing in Medical Imaging IPMI’07. [S. l.]: Springer, 2007, 20: 421-33.
[13] SIMON D. Optimal state estimation: kalman, and nonlinear approaches [M]. Hoboken, New Jersey: Wiley, 2006.
[14] SUN W, NAGPAL K M, KHARGONEKAR P P. control and ltering for sampleddata systems [J]. IEEE Transactions on Automatic Control, 1993, 38(8): 1162-1175.
[15] MUZIC R F, CORNELIUS S, COMKAT: Compartment model kinetic analysis tool [J]. The Journal of Nuclear Medicine, 2001, 42(4): 636-645.
[16] WONG K P, FENG D, MEIKLE S, et al. Simultaneous estimation of physiological parameters and the input function in vivo PET data [J]. IEEE Transactions on Information Technology in Biomedicine, 2001, 5(1): 67-76.

[1] 刘加海,杨茂林,雷航,廖勇. 共享资源约束下多核实时任务分配算法[J]. J4, 2014, 48(1): 113-117.
[2] 赵诗奎, 方水良, 顾新建. 柔性车间调度的新型初始机制遗传算法[J]. J4, 2013, 47(6): 1022-1030.
[3] 方水良, 姚嫣菲, 赵诗奎. 柔性车间调度的改进遗传算法[J]. J4, 2012, 46(4): 629-635.
[4] 刘加海,杨茂林. 基于多核处理器平台的公平调度算法[J]. J4, 2011, 45(9): 1566-1570.