交通工程、土木工程 |
|
|
|
|
基于化力模型的供水钢管内腐蚀力学性能评估 |
彭仁竹1( ),李素贞1,2,*( ) |
1. 同济大学 建筑工程系,上海 200092 2. 同济大学 土木工程防灾减灾国家重点实验室,上海 200092 |
|
Evaluation of water supply steel pipeline mechanical property under internal corrosion based on chemo-mechanical model |
Renzhu PENG1( ),Suzhen LI1,2,*( ) |
1. Department of Building Engineering, Tongji University, Shanghai 200092, China 2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China |
1 |
中华人民共和国住房和城乡建设部. 2022年城市建设统计年鉴 [EB/OL]. (2023-10-11)[2023-10-13]. https://www.mohurd.gov.cn/document/file.
|
2 |
CAI J, JIANG X, LODEWIJKS G Residual ultimate strength of offshore metallic pipelines with structural damage: a literature review[J]. Ships and Offshore Structures, 2017, 12 (8): 1037- 1055
doi: 10.1080/17445302.2017.1308214
|
3 |
WANG W, LI C-Q, SHI W Degradation of mechanical property of corroded water pipes after long service[J]. Urban Water Journal, 2019, 16 (7): 494- 504
doi: 10.1080/1573062X.2019.1687744
|
4 |
LI L, MAHMOODIAN M, LI C-Q, et al Effect of corrosion and hydrogen embrittlement on microstructure and mechanical properties of mild steel[J]. Construction and Building Materials, 2018, 170: 78- 90
doi: 10.1016/j.conbuildmat.2018.03.023
|
5 |
KRYZHANIVSKYI E, NYKYFORCHYN H Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs[J]. Materials Science, 2011, 47 (2): 127- 136
doi: 10.1007/s11003-011-9390-9
|
6 |
YAVAS D, MISHRA P, ALSHEHRI A, et al Nanoindentation study of corrosion-induced grain boundary degradation in a pipeline steel[J]. Electrochemistry Communications, 2018, 88: 88- 92
doi: 10.1016/j.elecom.2018.02.001
|
7 |
GARBATOV Y, SOARES C G, PARUNOV J, et al Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014, 85: 296- 303
doi: 10.1016/j.corsci.2014.04.031
|
8 |
VANAEI H, ESLAMI A, EGBEWANDE A A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models[J]. International Journal of Pressure Vessels and Piping, 2017, 149: 43- 54
doi: 10.1016/j.ijpvp.2016.11.007
|
9 |
MA H, ZHANG W, WANG Y, et al Advances in corrosion growth modeling for oil and gas pipelines: a review[J]. Process Safety and Environmental Protection, 2022, 171: 71- 86
|
10 |
MAZUMDER R K, SALMAN A M, LI Y, et al Reliability analysis of water distribution systems using physical probabilistic pipe failure method[J]. Journal of Water Resources Planning and Management, 2019, 145 (2): 04018097
doi: 10.1061/(ASCE)WR.1943-5452.0001034
|
11 |
DANN M R, HUYSE L The effect of inspection sizing uncertainty on the maximum corrosion growth in pipelines[J]. Structural Safety, 2018, 70: 71- 81
doi: 10.1016/j.strusafe.2017.10.005
|
12 |
蒋白懿, 叶友林, 李亚峰, 等 利用灰关联定权组合模型预测城镇给水管道腐蚀速率[J]. 沈阳建筑大学学报: 自然科学版, 2010, 26 (2): 4- 9 JIANG Baiyi, YE Youlin, LI Yafeng, et al. Corrosion prediction for pipeline in water supply of town by grey relation weight-making combination forecasting model[J]. Journal of Shenyang Jianzhu University: Natural Science Edition, 2010, 26 (2): 4- 9
|
13 |
郭浩. 供水管道电化学腐蚀机理研究 [D]. 天津: 天津大学, 2016. GUO Hao. Research on electrochemical corrosion mechanism of water supply pipes [D]. Tianjin: Tianjin University, 2016.
|
14 |
SARIN P, SNOEYINK V, LYTLE D, et al Iron corrosion scales: model for scale growth, iron release, and colored water formation[J]. Journal of Environmental Engineering, 2004, 130 (4): 364- 373
doi: 10.1061/(ASCE)0733-9372(2004)130:4(364)
|
15 |
SARIN P, SNOEYINK V, BEBEE J, et al Physico-chemical characteristics of corrosion scales in old iron pipes[J]. Water Research, 2001, 35 (12): 2961- 2969
doi: 10.1016/S0043-1354(00)00591-1
|
16 |
OHTSUKA T, KOMATSU T Enhancement of electric conductivity of the rust layer by adsorption of water[J]. Corrosion Science, 2005, 47 (10): 2571- 2577
doi: 10.1016/j.corsci.2004.10.010
|
17 |
WANG Y, SHI T, ZHANG H, et al Hysteretic behavior and cyclic constitutive model of corroded structural steel under general atmospheric environment[J]. Construction and Building Materials, 2021, 270: 121474
doi: 10.1016/j.conbuildmat.2020.121474
|
18 |
WOLOSZYK K, GARBATOV Y, KŁOSOWSKI P Stress–strain model of lower corroded steel plates of normal strength for fitness-for-purpose analyses[J]. Construction and Building Materials, 2022, 323: 126560
doi: 10.1016/j.conbuildmat.2022.126560
|
19 |
OU Y-C, SUSANTO Y T T, ROH H Tensile behavior of naturally and artificially corroded steel bars[J]. Construction and Building Materials, 2016, 103: 93- 104
doi: 10.1016/j.conbuildmat.2015.10.075
|
20 |
WU H, LEI H, CHEN Y F Grey relational analysis of static tensile properties of structural steel subjected to urban industrial atmospheric corrosion and accelerated corrosion[J]. Construction and Building Materials, 2022, 315: 125706
doi: 10.1016/j.conbuildmat.2021.125706
|
21 |
ZHANG W, SONG X, GU X, et al Tensile and fatigue behavior of corroded rebars[J]. Construction and Building Materials, 2012, 34: 409- 417
doi: 10.1016/j.conbuildmat.2012.02.071
|
22 |
IMPERATORE S, RINALDI Z, DRAGO C Degradation relationships for the mechanical properties of corroded steel rebars[J]. Construction and Building Materials, 2017, 148: 219- 230
doi: 10.1016/j.conbuildmat.2017.04.209
|
23 |
CHABOCHE J-L A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24 (10): 1642- 1693
doi: 10.1016/j.ijplas.2008.03.009
|
24 |
胡桂娟. 拉扭加载下金属材料的塑性行为 [D]. 南宁: 广西大学, 2012. HU Guijuan. Plastic behavior of metals under tension-torsion loading: experimental and numerical research on yield surface evolution [D]. Nanning: Guangxi University, 2012.
|
25 |
孙昊. 粒子群神经网络在供水管线腐蚀预测中的应用研究 [D]. 大庆: 东北石油大学, 2018. SUN Hao. Research on application of particle swarm neural network in corrosion prediction of water supply pipeline [D]. Daqing: Northeastern Petroleum University, 2018.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|