Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1681-1690    DOI: 10.3785/j.issn.1008-973X.2024.08.015
交通工程、土木工程     
基于化力模型的供水钢管内腐蚀力学性能评估
彭仁竹1(),李素贞1,2,*()
1. 同济大学 建筑工程系,上海 200092
2. 同济大学 土木工程防灾减灾国家重点实验室,上海 200092
Evaluation of water supply steel pipeline mechanical property under internal corrosion based on chemo-mechanical model
Renzhu PENG1(),Suzhen LI1,2,*()
1. Department of Building Engineering, Tongji University, Shanghai 200092, China
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(2373 KB)   HTML
摘要:

为了解决已有钢管腐蚀深度预测模型未考虑电化学腐蚀机理,难以泛化到不同应用场景的问题,提出基于电化学腐蚀机理的腐蚀深度预测模型. 该模型以溶解氧质量浓度和水温监测数据作为输入,预测管壁平均腐蚀深度. 结合腐蚀深度预测模型、腐蚀深度-力学性能退化经验公式及Chaboche本构模型,提出化力模型,用于估算腐蚀后管材的单轴应力-应变曲线. 该单轴应力-应变曲线可以为全寿命运营周期内管道结构的安全评估提供依据. 以某根服役的供水钢管为案例,结合实时监测数据,验证了该模型的合理性和可行性.

关键词: 市政工程供水钢管化力模型电化学腐蚀单轴应力-应变曲线    
Abstract:

A corrosion depth prediction model based on the electrochemical corrosion mechanism was proposed in order to address the limitations of existing steel pipe corrosion depth prediction models, which do not consider the electrochemical corrosion mechanism and are difficult to generalize to different application scenarios. Dissolved oxygen mass concentration and water temperature monitoring data were used as inputs to predict the average corrosion depth of the pipe wall. A chemo-mechanical model was proposed combined with the corrosion depth prediction model, an empirical formula for corrosion depth-mechanical performance degradation and the Chaboche constitutive model in order to estimate the uniaxial stress-strain curve of the corroded pipe material. This uniaxial stress-strain curve can serve as a basis for the safety assessment of pipeline structures throughout their entire operational lifespan. A case study of an operational water supply steel pipe validated the rationality and feasibility of the model by using real-time monitoring data.

Key words: municipal engineering    water steel pipeline    chemo-mechanical model    electrochemical corrosion    uniaxial stress-strain curve
收稿日期: 2023-07-18 出版日期: 2024-07-23
CLC:  TU 990  
基金资助: 国家自然科学基金资助项目(52378525);土木工程防灾国家重点实验室自主课题研究基金资助项目(SLDRCE19-B-25).
通讯作者: 李素贞     E-mail: 2111363@tongji.edu.cn;lszh@tongji.edu.cn
作者简介: 彭仁竹(1996—),男,博士生,从事管道安全监测与评估的研究. orcid.org/0000-0001-9387-0707. E-mail:2111363@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
彭仁竹
李素贞

引用本文:

彭仁竹,李素贞. 基于化力模型的供水钢管内腐蚀力学性能评估[J]. 浙江大学学报(工学版), 2024, 58(8): 1681-1690.

Renzhu PENG,Suzhen LI. Evaluation of water supply steel pipeline mechanical property under internal corrosion based on chemo-mechanical model. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1681-1690.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1681

图 1  提出的化力模型的总体框架
图 2  供水管道电化学腐蚀的三阶段示意图
参数标定值
AO/ s?123.2713
Ea/(kJ?mol?1)23.5
DO/(m2?s?1)1.43×10?11
DOC/(m2?s?1)1.06×10?11
表 1  腐蚀速率预测模型的参数识别结果
图 3  不同学者得到的腐蚀程度-钢材力学性能退化经验公式
图 4  现场实测得到的溶解氧质量浓度和水温
图 5  利用电化学腐蚀速率预测模型计算得到的钢管和球墨铸铁腐蚀速率
参数数值
wFe0.33
L/μm400
AO/ s?123.2713
Ea/( kJ?mol?1)23.5
DO/( m2?s?1)1.43×10?11
DOC/( m2?s?1)1.06×10?11
表 2  提出的电化学腐蚀速率预测模型的参数
图 6  现场实测得到的pH值、流速和内压数据
图 7  使用已有经验模型计算得到的腐蚀速率
图 8  管壁平均腐蚀深度随扩散系数的变化
参数数值参数数值
fy0/ MPa235M2
E0/ MPa210 000C1/ MPa2 700
fu0/ MPa375C2/ MPa800
Q/ MPa200γ1200
b40γ250
表 3  Chaboche本构模型参数[26]
图 9  内腐蚀作用下钢管的时变单轴应力-应变曲线
1 中华人民共和国住房和城乡建设部. 2022年城市建设统计年鉴 [EB/OL]. (2023-10-11)[2023-10-13]. https://www.mohurd.gov.cn/document/file.
2 CAI J, JIANG X, LODEWIJKS G Residual ultimate strength of offshore metallic pipelines with structural damage: a literature review[J]. Ships and Offshore Structures, 2017, 12 (8): 1037- 1055
doi: 10.1080/17445302.2017.1308214
3 WANG W, LI C-Q, SHI W Degradation of mechanical property of corroded water pipes after long service[J]. Urban Water Journal, 2019, 16 (7): 494- 504
doi: 10.1080/1573062X.2019.1687744
4 LI L, MAHMOODIAN M, LI C-Q, et al Effect of corrosion and hydrogen embrittlement on microstructure and mechanical properties of mild steel[J]. Construction and Building Materials, 2018, 170: 78- 90
doi: 10.1016/j.conbuildmat.2018.03.023
5 KRYZHANIVSKYI E, NYKYFORCHYN H Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs[J]. Materials Science, 2011, 47 (2): 127- 136
doi: 10.1007/s11003-011-9390-9
6 YAVAS D, MISHRA P, ALSHEHRI A, et al Nanoindentation study of corrosion-induced grain boundary degradation in a pipeline steel[J]. Electrochemistry Communications, 2018, 88: 88- 92
doi: 10.1016/j.elecom.2018.02.001
7 GARBATOV Y, SOARES C G, PARUNOV J, et al Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014, 85: 296- 303
doi: 10.1016/j.corsci.2014.04.031
8 VANAEI H, ESLAMI A, EGBEWANDE A A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models[J]. International Journal of Pressure Vessels and Piping, 2017, 149: 43- 54
doi: 10.1016/j.ijpvp.2016.11.007
9 MA H, ZHANG W, WANG Y, et al Advances in corrosion growth modeling for oil and gas pipelines: a review[J]. Process Safety and Environmental Protection, 2022, 171: 71- 86
10 MAZUMDER R K, SALMAN A M, LI Y, et al Reliability analysis of water distribution systems using physical probabilistic pipe failure method[J]. Journal of Water Resources Planning and Management, 2019, 145 (2): 04018097
doi: 10.1061/(ASCE)WR.1943-5452.0001034
11 DANN M R, HUYSE L The effect of inspection sizing uncertainty on the maximum corrosion growth in pipelines[J]. Structural Safety, 2018, 70: 71- 81
doi: 10.1016/j.strusafe.2017.10.005
12 蒋白懿, 叶友林, 李亚峰, 等 利用灰关联定权组合模型预测城镇给水管道腐蚀速率[J]. 沈阳建筑大学学报: 自然科学版, 2010, 26 (2): 4- 9
JIANG Baiyi, YE Youlin, LI Yafeng, et al. Corrosion prediction for pipeline in water supply of town by grey relation weight-making combination forecasting model[J]. Journal of Shenyang Jianzhu University: Natural Science Edition, 2010, 26 (2): 4- 9
13 郭浩. 供水管道电化学腐蚀机理研究 [D]. 天津: 天津大学, 2016.
GUO Hao. Research on electrochemical corrosion mechanism of water supply pipes [D]. Tianjin: Tianjin University, 2016.
14 SARIN P, SNOEYINK V, LYTLE D, et al Iron corrosion scales: model for scale growth, iron release, and colored water formation[J]. Journal of Environmental Engineering, 2004, 130 (4): 364- 373
doi: 10.1061/(ASCE)0733-9372(2004)130:4(364)
15 SARIN P, SNOEYINK V, BEBEE J, et al Physico-chemical characteristics of corrosion scales in old iron pipes[J]. Water Research, 2001, 35 (12): 2961- 2969
doi: 10.1016/S0043-1354(00)00591-1
16 OHTSUKA T, KOMATSU T Enhancement of electric conductivity of the rust layer by adsorption of water[J]. Corrosion Science, 2005, 47 (10): 2571- 2577
doi: 10.1016/j.corsci.2004.10.010
17 WANG Y, SHI T, ZHANG H, et al Hysteretic behavior and cyclic constitutive model of corroded structural steel under general atmospheric environment[J]. Construction and Building Materials, 2021, 270: 121474
doi: 10.1016/j.conbuildmat.2020.121474
18 WOLOSZYK K, GARBATOV Y, KŁOSOWSKI P Stress–strain model of lower corroded steel plates of normal strength for fitness-for-purpose analyses[J]. Construction and Building Materials, 2022, 323: 126560
doi: 10.1016/j.conbuildmat.2022.126560
19 OU Y-C, SUSANTO Y T T, ROH H Tensile behavior of naturally and artificially corroded steel bars[J]. Construction and Building Materials, 2016, 103: 93- 104
doi: 10.1016/j.conbuildmat.2015.10.075
20 WU H, LEI H, CHEN Y F Grey relational analysis of static tensile properties of structural steel subjected to urban industrial atmospheric corrosion and accelerated corrosion[J]. Construction and Building Materials, 2022, 315: 125706
doi: 10.1016/j.conbuildmat.2021.125706
21 ZHANG W, SONG X, GU X, et al Tensile and fatigue behavior of corroded rebars[J]. Construction and Building Materials, 2012, 34: 409- 417
doi: 10.1016/j.conbuildmat.2012.02.071
22 IMPERATORE S, RINALDI Z, DRAGO C Degradation relationships for the mechanical properties of corroded steel rebars[J]. Construction and Building Materials, 2017, 148: 219- 230
doi: 10.1016/j.conbuildmat.2017.04.209
23 CHABOCHE J-L A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24 (10): 1642- 1693
doi: 10.1016/j.ijplas.2008.03.009
24 胡桂娟. 拉扭加载下金属材料的塑性行为 [D]. 南宁: 广西大学, 2012.
HU Guijuan. Plastic behavior of metals under tension-torsion loading: experimental and numerical research on yield surface evolution [D]. Nanning: Guangxi University, 2012.
25 孙昊. 粒子群神经网络在供水管线腐蚀预测中的应用研究 [D]. 大庆: 东北石油大学, 2018.
SUN Hao. Research on application of particle swarm neural network in corrosion prediction of water supply pipeline [D]. Daqing: Northeastern Petroleum University, 2018.
[1] 石战结,田钢,赵文轲,王治华. 超浅层三维地震勘探技术应用[J]. J4, 2013, 47(5): 912-917.