Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1775-1784    DOI: 10.3785/j.issn.1008-973X.2023.09.009
交通工程     
重载曲线缓和段钢轨滚动接触疲劳机理
栗杨1(),白彬亨2,莫日格吉勒2,赵鑫1,*(),温泽峰1,王卓3
1. 西南交通大学 牵引动力国家重点实验室,四川 成都 610031
2. 内蒙古包钢钢联股份有限公司 制造部,内蒙古 包头 014010
3. 中国铁路呼和浩特集团有限公司 工务处,内蒙古 呼和浩特 010000
Mechanism of rolling contact fatigue occurring on rails of heavy haul railway transition line
Yang LI1(),Bin-heng BAI2,Ri-ge-ji-le MO2,Xin ZHAO1,*(),Ze-feng WEN1,Zhuo WANG3
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2. Manufacturing Department, Mongolia Baotou Steel Union Limited Company, Baotou 014010, China
3. Maintenance Department, China Railway Hohhot Group Limited Company, Hohhot 010000, China
 全文: PDF(2169 KB)   HTML
摘要:

某轴重25 t运煤重载铁路半径580~1000 m的曲线入/出缓和段钢轨存在明显的滚动接触疲劳(RCF)差异现象,出缓和段的疲劳更严重. 在轮轨现场观测和列车参数调研的基础上,使用Simpack建立包含2节内重联机车与108节货车的重载列车动力学模型,利用损伤函数模型数值分析入/出缓和段RCF差异的机理和主要影响因素. 结果表明,RCF差异由货车曲线通过行为主导,货车中转向架导向轮对的贡献最显著,非导向轮对与机车的贡献相对轻微. 在标准轮轨廓形匹配工况下,RCF差异不显著;待货车车轮磨耗失形后,钢轨磨耗失形对RCF差异的影响并不显著,轮轨蠕滑率/力在出缓和段比在入缓和段高是导致RCF差异的根本原因. 磨耗后的货车转向架导向轮对与磨耗轨在小半径曲线上频繁地相互作用,是导致入/出缓和段钢轨RCF差异的主要原因.

关键词: 重载铁路钢轨滚动接触疲劳(RCF)缓和曲线列车动力学损伤函数    
Abstract:

A field investigation was conducted on a heavy haul railway line with axle load of 25 t. There was a significant difference in rail rolling contact fatigue (RCF) on the entering and leaving transition sections on curves with radius of 580?1000 m, and particularly, the RCF on the leaving transition section was severer. A dynamic model of heavy haul train including two locomotives and 108 wagons was established using Simpack on the basis of on-site wheel/rail observation and train parameter investigation, and a damage function model was applied to numerically analyze the mechanism of the rail RCF difference on the entering and leaving transition sections. Result shows that the RCF difference is dominated by the curving behavior of wagons, and the contribution of the leading wheelsets is the most significant, while the contribution of the trailing wheelsets and locomotives is relatively slight. More detailed analysis shows that the RCF is not significant under the condition of standard wheel/rail profile matching. However, after the wagon wheels wear, the wheel/rail creepage and creep force on the leaving transition section are higher than those on the entering transition section, which is the primary reason for the RCF. And the effect of rail worn profile is not significant for the RCF. The frequent interaction between the worn wagons leading wheelsets and the worn rail on the sharp radius curve is the main reason for the rail RCF difference on the entering and leaving transition sections.

Key words: heavy haul railway    rail    rolling contact fatigue (RCF)    transition curve    train dynamics    damage function
收稿日期: 2022-10-29 出版日期: 2023-10-16
CLC:  U 213.4  
基金资助: 国家自然科学基金资助项目(U21A20167);四川省国际科技创新合作项目(2021YFH0006);牵引动力国家重点实验室自主课题(2022TPL_T06)
通讯作者: 赵鑫     E-mail: liyang5611@163.com;xinzhao@swjtu.edu.cn
作者简介: 栗杨(1998—),男,硕士生,从事轮轨滚动接触疲劳研究. orcid.org/0000-0002-5770-6915. E-mail: liyang5611@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
栗杨
白彬亨
莫日格吉勒
赵鑫
温泽峰
王卓

引用本文:

栗杨,白彬亨,莫日格吉勒,赵鑫,温泽峰,王卓. 重载曲线缓和段钢轨滚动接触疲劳机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1775-1784.

Yang LI,Bin-heng BAI,Ri-ge-ji-le MO,Xin ZHAO,Ze-feng WEN,Zhuo WANG. Mechanism of rolling contact fatigue occurring on rails of heavy haul railway transition line. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1775-1784.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.009        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1775

图 1  某轴重25 t运煤重载铁路上某半径580 m曲线入/出缓和段超高62 mm处的钢轨表面状态对比
图 2  半径580 m曲线入/出缓和段以及圆曲线段示意图
图 3  半径580 m曲线入/出缓和段不同超高处测量的轨面裂纹深度峰值
图 4  相同重载线上不同半径曲线入/出缓和段外轨表面状态
图 5  不同半径曲线圆曲线段实测钢轨廓形对比
图 6  运行于所调研重载线的机、货车车轮廓形随机测量结果
图 7  某半径580 m曲线入/出缓和段与圆曲线段的实测轨道不平顺
图 8  列车动力学模型示意图
车型 m/kg 侧滚 点头 摇头 纵向 横向 垂向
轮对 构架 车体 J1, J2, J3/
(kg·m2)
J1, J2, J3/
(kg·m2)
J1, J2, J3/
(kg·m2)
E1, E2/
(MN·m?1)
E1, E2/
(MN·m?1)
E1, E2/
(MN·m?1)
机车 3 562 4 698 76 356 2 064, 2 260, 119 353 573, 8 480, 2 971 813 2 064, 10 360, 2 968 047 36.000, 0.226 4.830, 0.226 2.910, 0.557
货车 1 171 497 93 328 600, 20, 216 300 70, 184, 996 300 600, 169, 983 900 11.000, 3.127 13.000, 3.127 160.000, 4.235
表 1  机车与货车动力学模型建立所用主要参数
R/m h2/mm p/‰ L1/m L2/m v/(km·h?1)
580
800
1 000
75
80
50
?6.5
?2.5
?4.6
100
190
150
586.09
683.02
722.31
67
67
67
表 2  模拟曲线的主要参数
图 9  2种钢轨钢材质的损伤函数示意图
材料 FA/N ε1/10?7 FB/N ε2/(10?7 $N_{\rm{f}}^{-1}$) H/HB
BS11 15 2.0 65 ?2.91 240
U75V淬 23 2.0 100 ?2.91 369
表 3  2种钢轨钢材料的损伤函数关键参数
图 10  半径580 m曲线外、内轨滚动接触疲劳损伤值预测结果
图 11  损伤函数预测的半径580 m曲线入/出缓和段外、内轨滚动接触疲劳纵向分布
图 12  仅机、货车通过半径580 m曲线入/出缓和段时,预测钢轨滚动接触疲劳沿纵向分布
图 13  货车转向架导向、非导向轮对通过半径580 m曲线入/出缓和段时,外轨疲劳损伤的纵向分布
图 14  货车前转向架导向、非导向轮对通过半径580 m曲线入/出缓和段时,外轨磨耗数纵向分布
图 15  货车前转向架导向轮通过半径580 m入/出缓和段时,外轨纵、横向蠕滑力/率绝对值的纵向分布
图 16  不同轮轨廓形匹配工况下,半径580 m曲线外轨侧的入/出缓和段滚动接触疲劳损伤差值
图 17  半径800 m与半径1000 m曲线外轨滚动接触疲劳预测结果
图 18  各半径曲线入/出缓和段不同超高处的外轨疲劳损伤差值对比
1 金学松, 张继业, 温泽峰, 等 轮轨滚动接触疲劳现象分析[J]. 机械强度, 2002, 24 (2): 250- 257
JIN Xue-song, ZHANG Ji-ye, WEN Ze-feng, et al Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24 (2): 250- 257
doi: 10.16579/j.issn.1001.9669.2002.02.023
2 邓勇, 杨滨, 袁俊 U75V 60 kg/m热处理钢轨横向断裂原因分析[J]. 钢铁钒钛, 2017, 38 (6): 153- 157
DENG Yong, YANG Bin, YUAN Jun Cause of transverse fracture on U75V 60 kg/m heat-treated rail[J]. Iron Steel Vanadium Titanium, 2017, 38 (6): 153- 157
doi: 10.7513/j.issn.1004-7638.2017.06.027
3 赵鑫, 温泽峰, 王衡禹, 等 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21 (1): 1- 35
ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21 (1): 1- 35
doi: 10.19818/j.cnki.1671-1637.2021.01.001
4 ZHAO X. Dynamic wheel/rail rolling contact at singular defects with application to squats [D]. Delft: Delft University of Technology, 2012.
5 张彦平. 重载铁路曲线段钢轨异常磨损研究[D]. 秦皇岛: 燕山大学, 2015.
ZHANG Yan-ping. Research on the abrasion of the heavy-haul railway on the curve section [D]. Qinhuangdao: Yanshan University, 2015.
6 ZHOU Y, WANG S F, WANG T Y, et al Field and laboratory investigation of the relationship between rail head check and wear in a heavy-haul railway[J]. Wear, 2014, 315 (1/2): 68- 77
7 周清跃, 张建峰, 郭战伟, 等 重载铁路钢轨的伤损及预防对策研究[J]. 中国铁道科学, 2010, 31 (1): 27- 31
ZHOU Qing-yue, ZHANG Jian-feng, GUO Zhan-wei, et al Research on the rail damages and the preventive countermeasures in heavy haul railways[J]. China Railway Science, 2010, 31 (1): 27- 31
8 MATSUDA H, SATOH Y, KANEMATSU Y, et al On-site investigation and analysis of damage leading to rail break[J]. Wear, 2011, 271 (1): 168- 173
9 寇沙沙, 梁正伟, 刘莉, 等 U75V钢轨鱼鳞伤及剥离掉块缺陷分析[J]. 钢铁钒钛, 2016, 37 (4): 162- 166
KOU Sha-sha, LIANG Zheng-wei, LIU Li, et al Analysis on corner fine cracks and scaling defects of U75V rail[J]. Iron Steel Vanadium Titanium, 2016, 37 (4): 162- 166
doi: 10.7513/j.issn.1004-7638.2016.04.029
10 钟雯. 钢轨的损伤机理研究[D]. 成都: 西南交通大学, 2011.
ZHONG Wen. Experimental investigation of rail damnification mechanism [D]. Chengdu: Southwest Jiaotong University, 2011.
11 焦彬洋, 王军平, 蒋俊, 等 钢轨打磨对轨面疲劳裂纹扩展的影响[J]. 中国铁路, 2022, (4): 86- 91
JIAO Bin-yang, WANG Jun-ping, JIANG Jun, et al Effect of rail grinding on fatigue crack growth on rail surface[J]. China Railway, 2022, (4): 86- 91
12 梁喜仁, 陶功权, 陆文教, 等 地铁钢轨滚动接触疲劳损伤研究[J]. 机械工程学报, 2019, 55 (2): 147- 155
LIANG Xi-ren, TAO Gong-quan, LU Wen-jiao, et al Study on the rail rolling contact fatigue of subway[J]. Journal of Mechanical Engineering, 2019, 55 (2): 147- 155
doi: 10.3901/JME.2019.02.147
13 徐万华, 折成林 钢轨打磨对重载铁路小半径曲线轮轨接触区域分布概率和轮轨动力学特性的影响[J]. 铁道技术监督, 2021, 49 (9): 42- 46
XU Wan-hua, ZHE Cheng-lin Influence of rail grinding on distribution probability of wheel-rail contact area and wheel-rail dynamics features of small radius curve in heavy haul railway[J]. Railway Quality Control, 2021, 49 (9): 42- 46
14 贺挨宽 缓和曲线线型及长度标准的研究[J]. 铁道标准设计, 2007, (1): 1- 3
HE Ai-kuan Research on line type and length standard of transitional curves[J]. Railway Standard Design, 2007, (1): 1- 3
doi: 10.3969/j.issn.1004-2954.2007.01.002
15 蔡宇天, 赵鑫, 陈佳明, 等 城际动车组车轮Ⅰ类滚动接触疲劳机理研究[J]. 中南大学学报: 自然科学版, 2020, 51 (9): 2653- 2662
CAI Yu-tian, ZHAO Xin, CHEN Jia-ming, et al Study on initiation mechanism of rolling contactfatigue class Ⅰ on intercity EMU wheels[J]. Journal of Central South University: Science and Technology, 2020, 51 (9): 2653- 2662
16 孙树磊, 丁军君, 周张义, 等 重载列车纵向冲动动力学分析及试验研究[J]. 机械工程学报, 2017, 53 (8): 138- 146
SUN Shu-lei, DING Jun-jun, ZHOU Zhang-yi, et al Analysis and test of heavy haul train longitudinal impulse dynamics[J]. Journal of Mechanical Engineering, 2017, 53 (8): 138- 146
doi: 10.3901/JME.2017.08.138
17 陶功权. 和谐型电力机车车轮多边形磨耗形成机理研究[D]. 成都: 西南交通大学, 2018.
TAO Gong-quan. Investigation into the formation mechanism of the polygonal wear of HXD electric locomotive wheels [D]. Chengdu: Southwest Jiaotong University, 2018.
18 张建全, 黄运华, 李芾 缓和曲线线型对铁道车辆动力学性能的影响[J]. 交通运输工程学报, 2010, 10 (4): 39- 44
ZHANG Jian-quan, HUANG Yun-hua, LI Fu Influence of transition curves on dynamics performance of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (4): 39- 44
doi: 10.3969/j.issn.1671-1637.2010.04.007
19 BURSTOW M C. Whole life rail model application and development for RSSB-continued development of an RCF damage parameter [R]. London: [s.n.], 2004.
20 李闯 U75V钢轨在线热处理工艺研究[J]. 金属热处理, 2018, 43 (1): 152- 156
LI Chuang Online heat treatment of U75V rail[J]. Heat Treatment of Metals, 2018, 43 (1): 152- 156
doi: 10.13251/j.issn.0254-6051.2018.01.031
21 JOHN T, JOHN S, JAVIER P. The development of a wheel wear and rolling contact fatigue model [R]. London: [s.n.], 2007
22 FLECHER D J, HYDE P, KAPOOR A Modelling and full-scale trials to investigate fluid pressurization of rolling contact fatigue cracks[J]. Wear, 2008, 265 (1): 1317- 1324
23 刘永锋. 复杂环境下大功率电力机车车轮滚动接触疲劳机理及防治研究[D]. 成都: 西南交通大学, 2020.
LIU Yong-feng. Study on mechanism and prevention of wheel rolling contact fatigue of high-power AC locomotives running in complicated environments [D]. Chengdu: Southwest Jiaotong University, 2020.
24 陈佳明, 赵鑫, 蔡宇天, 等 地铁车轮轮缘根部滚动接触疲劳机理研究[J]. 铁道科学与工程学报, 2020, 17 (9): 2372- 2380
CHEN Jia-ming, ZHAO Xin, CAI Yu-tian, et al Investigation on rolling contact fatigue mechanism of metro wheel flange root[J]. Journal of Railway Science and Engineering, 2020, 17 (9): 2372- 2380
doi: 10.19713/j.cnki.43-1423/u.T20191173
[1] 汤雪扬,蔡小培,王伟华,常文浩,王启好. 基于粒子概率神经网络算法的钢轨波磨识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1766-1774.
[2] 李国厚,黄平捷,陈佩华,侯迪波,张光新,周泽魁. 涡流检测在钢轨裂纹定量化评估中的应用[J]. J4, 2011, 45(11): 2038-2042.