浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 81-91    DOI: 10.3785/j.issn.1008-973X.2023.01.009
 土木工程

1. 浙江大学 建筑工程学院，浙江 杭州 310058
2. 浙江大学 超重力研究中心，浙江 杭州 310058
3. 浙江华艺建筑设计有限公司，浙江 杭州 310000
Buoyancy and motion of objects in fluid in centrifugal hypergravity environment
Tian-hao ZHAO1(),Jian-jing ZHENG1,2,*(),Jing-hua LING3,Chang-yu SHI1,Dao-sheng LING1,2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
3. Zhejiang Huayi Architectural Design Limited Company, Hangzhou 310000, China
 全文: PDF(1827 KB)   HTML

Abstract:

The expressions of the test hypergravity potential generated by the earth gravity and the centrifugal hypergravity, the static fluid pressure and the buoyancy of an object in fluid were derived in the rotational non-inertial frame by considering the residual angle of the suspended basket in order to characterize the motion law of object in fluid under the centrifugal hypergravity environment. The motion equation of a rigid object in static fluid in centrifugal model test was established based on Newton’s second law, and its numerical solution program was compiled and verified. The numerical analysis results of sphere motion in fluid show that the residual angle of the suspended basket can be ignored under high centrifugal acceleration. The equipotential surface of test hypergravity is a rotating paraboloid with the centrifuge spindle as the axis. The influence of earth gravity on the equipotential surface is gradually reduced with the increase of centrifugal acceleration. The shape of the equipotential surface tends to be a cylindrical surface. The buoyancy is centripetal and non-uniform, and the influence of the Coriolis force cannot be ignored when the object moves in fluid.

Key words: centrifugal hypergravity    gravity potential    buoyancy    Coriolis acceleration    trajectory

 CLC: TU 411

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 赵天浩 郑建靖 凌靖华 施昌宇 凌道盛

#### 引用本文:

Tian-hao ZHAO,Jian-jing ZHENG,Jing-hua LING,Chang-yu SHI,Dao-sheng LING. Buoyancy and motion of objects in fluid in centrifugal hypergravity environment. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 81-91.

#### 链接本文:

 图 1  离心机的坐标系 图 2   ${{\boldsymbol{\phi}} _{\bf{G}}} = {\bf{1/5 }}$， ${{\boldsymbol{\phi}} _{\bf{R}}} = {\bf{1/3}}$时，θ随N的变化曲线 图 3  当N = 5， ${{\boldsymbol{\phi}} _{\bf{G}}} = {\bf{1/5 }}$时，θ随 ${{\boldsymbol{\phi}} _{\bf{R}}}$的变化曲线 图 4  不同N时εv、εh随R0的变化图 表 1  不同Re下CD的表达式 图 5  N = 10时，不同 $\;{{\boldsymbol{\beta}} _{\bf{0}}}$下的物体运动轨迹 图 6  不同 ${{\boldsymbol{\beta}} _{\bf{0}}}$下 ${{\boldsymbol{\delta}} _{{{\bf{r}}}}}$随N的变化曲线 图 7  沉降速度随流体黏度的变化曲线 图 8   ${\alpha _0}{\text{ = }}{\boldsymbol{1}}$时的圆球运动轨迹 图 9  当ε= 2，α0= 1时 $f$随τ的变化曲线 图 10   $\;{{\boldsymbol{\beta }}}_{{\bf{0}}} = {\boldsymbol{\pm 1}}、{{\boldsymbol{\alpha}} }_{{\bf{0}}}\text{\;=\;}{{\boldsymbol{\gamma }}}_{{\bf{0}}}\text{\;=\;{\bf{0}}}$时的圆球运动轨迹 图 11   ${{\boldsymbol{\gamma}} }_{{\bf{0}}}={\boldsymbol{\pm 1}}、{{\boldsymbol{\alpha}} }_{{\bf{0}}}\text{\;=\;}{{\boldsymbol{\beta}} }_{{\bf{0}}}\text{\;=\;{\bf{0}}}$时的圆球运动轨迹
 1 PHILLIPS E. De l’equilibre des solides elastiques semblables [M]. Paris: C. R. Academie des Sciences, 1869. 2 CANDIA G, MIKOLA R G, SITAR N Seismic response of retaining walls with cohesive backfill: centrifuge model studies[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 411- 419 doi: 10.1016/j.soildyn.2016.09.013 3 ARDIA P, GIORDANO D, SCHMIDT M W A model for the viscosity of rhyolite as a function of H2O-content and pressure: a calibration based on centrifuge piston cylinder experiments[J]. Geochimica et Cosmochimica Acta, 2008, 72 (24): 6103- 6123 doi: 10.1016/j.gca.2008.08.025 4 SASSA S, SEKIGUCHI H Wave-induced liquefaction of beds of sand in a centrifuge[J]. Geotechnique, 1999, 49 (5): 621- 638 doi: 10.1680/geot.1999.49.5.621 5 孔令刚, 姚宏波, 詹良通, 等 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报: 工学版, 2017, 51 (5): 847- 855KONG Ling-gang, YAO Hong-bo, ZHAN Liang-tong, et al Effect of water content on failure modes of evapotranspiration landfill cover[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 847- 855 6 何奔, 王欢, 洪义, 等 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报: 工学版, 2016, 50 (7): 1221- 1229HE Ben, WANG Huan, HONG Yi, et al Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (7): 1221- 1229 7 SUÑOL F, GONZÃLEZ-CINCA R Effects of gravity level on bubble formation and rise in low-viscosity liquids[J]. Physical Review E, 2015, 91 (5): 053009 doi: 10.1103/PhysRevE.91.053009 8 马立秋, 张建民, 张武 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32 (9): 272- 278 MA Li-qiu, ZHANG Jian-ming, ZHANG Wu Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32 (9): 272- 278 doi: 10.16285/j.rsm.2011.09.004 9 陈云敏 离心超重力实验: 探索多相介质演变的革命性手段[J]. 浙江大学学报: 工学版, 2020, 54 (4): 631- 632CHEN Yun-min Centrifugal hypergravity experiment: revolutionary means to explore the evolution of multiphase media[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 631- 632 10 FERREIRA R M L, FRANCA M J, LEAL J G A B, et al Mathematical modelling of shallow flows: closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics[J]. Canadian Journal of Civil Engineering, 2009, 36 (10): 1605- 1621 doi: 10.1139/L09-033 11 康娅娟, 刘少军 深海采矿提升系统研究综述[J]. 机械工程学报, 2021, 57 (20): 232- 243 KANG Ya-juan, LIU Shao-jun Summary of research on lifting system of deep sea mining[J]. Journal of Mechanical Engineering, 2021, 57 (20): 232- 243 doi: 10.3901/JME.2021.20.232 12 刘宝镛 全尺寸模型弹水下发射试验的有关问题[J]. 导弹与航天运载技术, 2000, (4): 1- 4 LIU Bao-yong Problems on the underwater launching test of full scale model missile[J]. Missiles and Space Vehicles, 2000, (4): 1- 4 doi: 10.3969/j.issn.1004-7182.2000.04.001 13 姜欣. 水库悬浮物的环境特性及其水质影响研究[D]. 大连: 大连理工大学, 2019.JIANG Xin. Environmental characteristics of suspended solids in reservoirs and their effects on water quality [D]. Dalian: Dalian University of Technology, 2019. 14 ZHAO L, GUO Z C, WANG Z, et al Influences of super-gravity field on aluminum grain refining[J]. Metallurgical and Materials Transactions, 2010, 41A (3): 670- 675 15 WILSON C. From Kepler to Newton: telling the tale [M]// The foundations of Newtonian scholarship. Singapore: World Scientific Publishing, 2000: 223-242. 16 PINES S Uniform representation of the gravitational potential and its derivatives[J]. AIAA Journal, 1973, 11 (11): 1508- 1511 doi: 10.2514/3.50619 17 王东明 利用地球重力位模型计算重力和重力梯度[J]. 地球物理学报, 1999, (Supple.1): 108- 114WANG Dong-ming Computing earth’s gravity and gravity gradient using geopotential model[J]. Chinese Journal Geophysics, 1999, (Supple.1): 108- 114 18 KAUFMAN A A, HANSEN R O Gravitational field of the earth[J]. Methods in Geochemistry and Geophysics, 2007, 41: 59- 159 doi: 10.1016/S0076-6895(07)41003-4 19 包承纲, 饶锡保 土工离心模型的试验原理[J]. 长江科学院院报, 1998, 15 (2): 1- 3BAO Cheng-gang, RAO Xi-bao Principle of the geotechnical centrifuge model test[J]. Journal of Yangtze River Scientific Research Institute, 1998, 15 (2): 1- 3 20 王巧莎. 超重环境下水波模拟与传播特性研究[D]. 绵阳: 中国工程物理研究院, 2019.WANG Qiao-sha. Research on simulation and propagation characteristics of water waves in hypergravity environment [D]. Mianyang: China Academy of Engineering Physics, 2019. 21 SCHOFIELD A N. An introduction to centrifuge modeling [M]// Centrifuges in soil mechanics. Boca Raton: CRC Press, 2020: 1-9. 22 LEI G H, SHI J Physical meanings of kinematics in centrifuge modeling technique[J]. Rock and Soil Mechanics, 2003, 24 (2): 188- 193 23 凌道盛, 施昌宇, 郑建靖, 等 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43 (2): 226- 235LING Dao-sheng, SHI Chang-yu, ZHENG Jian-jing, et al Non-inertial effects on matter motion in centrifugal model test[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (2): 226- 235 24 赵宇, 常胜, 郑建靖, 等 离心模拟超重力场下的雨滴运动轨迹分析[J]. 浙江大学学报: 工学版, 2021, 55 (3): 491- 499ZHAO Yu, CHANG Sheng, ZHENG Jian-jing, et al Analysis of raindrop trajectory in centrifuge-simulated hypergravity field[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 491- 499 25 CAICEDO B, TRISTANCHO J, THOREL L Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15 (3): 150- 164 doi: 10.1680/jphmg.14.00023 26 MAXEMOW S That's a drag: the effects of drag forces[J]. Undergraduate Journal of Mathematical Modeling: One+ Two, 2009, 2 (1): 4 27 CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles [M]. New York: Academic Press, 1978.
 [1] 林越,李洪宇,文艺成,邹彦超,杨少波,李醒飞. 深海自持式剖面浮标浮力变化规律[J]. 浙江大学学报(工学版), 2020, 54(7): 1440-1448. [2] 赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248. [3] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290. [4] 林勇刚,许建强,刘宏伟,李伟. 基于数字液压缸组的波浪能装置压力匹配[J]. 浙江大学学报(工学版), 2019, 53(10): 1892-1897. [5] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132. [6] 范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇. 水下滑翔机关键承压系统设计与试验研究[J]. J4, 2014, 48(4): 633-640. [7] 计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772. [8] 赵伟, 杨灿军, 陈鹰. 水下滑翔机浮力调节系统设计及动态性能研究[J]. J4, 2009, 43(10): 1772-1776. [9] 王桂荣 韦巍 屠旭永. EMS型磁浮列车驱动力和悬浮力的计算新方法[J]. J4, 2007, 41(3): 441-444. [10] 周媛 贺益康 年珩. 永磁型无轴承电机的设计与控制研究[J]. J4, 2006, 40(1): 14-19. [11] 年珩 贺益康. 永磁型无轴承电机的设计与运行分析[J]. J4, 2005, 39(6): 891-895.