Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 81-91    DOI: 10.3785/j.issn.1008-973X.2023.01.009
土木工程     
离心超重力环境下流体中物体浮力与运动
赵天浩1(),郑建靖1,2,*(),凌靖华3,施昌宇1,凌道盛1,2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江大学 超重力研究中心,浙江 杭州 310058
3. 浙江华艺建筑设计有限公司,浙江 杭州 310000
Buoyancy and motion of objects in fluid in centrifugal hypergravity environment
Tian-hao ZHAO1(),Jian-jing ZHENG1,2,*(),Jing-hua LING3,Chang-yu SHI1,Dao-sheng LING1,2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
3. Zhejiang Huayi Architectural Design Limited Company, Hangzhou 310000, China
 全文: PDF(1827 KB)   HTML
摘要:

为了表征离心超重力环境下物体在流体中的运动规律,基于旋转非惯性系,考虑吊篮摆动遗留角的影响,推导由地球常重力和离心超重力共同产生的试验超重力场的重力势、静止流体压力及流体中物体承受流体浮力的表达式. 基于Newton第二定律建立离心模型试验中静止流体内物体运动的控制方程,编制并验证了数值求解程序. 流体中圆球运动的数值分析结果表明,当离心加速度较大时,吊篮摆动遗留角的影响可以忽略. 试验超重力等势面是以离心机主轴为轴线的旋转抛物面,随着离心加速度的增大,等势面形态受地球重力的影响逐渐减小,趋于圆柱面. 物体在流体中所受的浮力具有向心性和非均匀性. 物体在流体中运动时,科氏力的影响不可忽略.

关键词: 离心超重力重力势浮力科氏加速度运动轨迹    
Abstract:

The expressions of the test hypergravity potential generated by the earth gravity and the centrifugal hypergravity, the static fluid pressure and the buoyancy of an object in fluid were derived in the rotational non-inertial frame by considering the residual angle of the suspended basket in order to characterize the motion law of object in fluid under the centrifugal hypergravity environment. The motion equation of a rigid object in static fluid in centrifugal model test was established based on Newton’s second law, and its numerical solution program was compiled and verified. The numerical analysis results of sphere motion in fluid show that the residual angle of the suspended basket can be ignored under high centrifugal acceleration. The equipotential surface of test hypergravity is a rotating paraboloid with the centrifuge spindle as the axis. The influence of earth gravity on the equipotential surface is gradually reduced with the increase of centrifugal acceleration. The shape of the equipotential surface tends to be a cylindrical surface. The buoyancy is centripetal and non-uniform, and the influence of the Coriolis force cannot be ignored when the object moves in fluid.

Key words: centrifugal hypergravity    gravity potential    buoyancy    Coriolis acceleration    trajectory
收稿日期: 2022-02-22 出版日期: 2023-01-17
CLC:  TU 411  
基金资助: 国家自然科学基金资助项目(51988101)
通讯作者: 郑建靖     E-mail: 21912219@zju.edu.cn;zhengjianjing@zju.edu.cn
作者简介: 赵天浩(1997—),男,硕士生,从事离心超重力试验的研究. orcid.org/0000-0002-1898-375X. E-mail: 21912219@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵天浩
郑建靖
凌靖华
施昌宇
凌道盛

引用本文:

赵天浩,郑建靖,凌靖华,施昌宇,凌道盛. 离心超重力环境下流体中物体浮力与运动[J]. 浙江大学学报(工学版), 2023, 57(1): 81-91.

Tian-hao ZHAO,Jian-jing ZHENG,Jing-hua LING,Chang-yu SHI,Dao-sheng LING. Buoyancy and motion of objects in fluid in centrifugal hypergravity environment. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 81-91.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.009        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/81

图 1  离心机的坐标系
图 2   ${{\boldsymbol{\phi}} _{\bf{G}}} = {\bf{1/5 }}$, ${{\boldsymbol{\phi}} _{\bf{R}}} = {\bf{1/3}}$时,θ随N的变化曲线
图 3  当N = 5, ${{\boldsymbol{\phi}} _{\bf{G}}} = {\bf{1/5 }}$时,θ随 $ {{\boldsymbol{\phi}} _{\bf{R}}} $的变化曲线
图 4  不同N时εv、εh随R0的变化图
Re CD的表达式
Re < 0.01 ${C_{\rm{D}}} = 1/16+24/{Re}$
0.01< Re ≤20 ${C_{\rm{D} } } = \dfrac{ {24} }{ { {Re} } }(1+0.131 \;5{ {Re} ^{0.82 - 0.05B} })$
20 ≤ Re ≤ 260 ${C_{\rm{D}}} = \dfrac{ {24} }{ { {Re} } }(1+0.193 \;5{ {Re} ^{0.630 \;5} })$
260 ≤ Re ≤ 1500 $\lg {C_{\rm{D}}} = 1.643 \;5 - 0.124 \;2B+0.155 \;8{B^2}$
1.5×103Re≤1.2×104 $\begin{gathered} \lg {C_{\rm{D} } } = - 2.457 \;1+2.555 \;8B - 0.929 \;5{B^2}+ \\ {\text{ } }0.104 \;9{B^3} \\ \end{gathered}$
1.2×104Re≤4.4×104 $\lg {C_{\rm{D}}} = - 1.918 \;1+0.637 \;0B - 0.063 \;6{B^2}$
4.4×104Re≤3.38×105 $\lg {C_{\rm{D}}} = - 4.339 \;0+1.580 \;9B - 0.154 \;6{B^2}$
3.38×105Re≤4×105 ${C_{\rm{D}}} = 29.78 - 5.3B$
4×105Re≤106 ${C_{\rm{D}}} = 0.1B - 0.49$
Re > 10 6 ${C_{\rm{D} } } = 0.19 - { {8 \times { {10}^4} } }/{ { {Re} } }$
表 1  不同Re下CD的表达式
图 5  N = 10时,不同 $ \;{{\boldsymbol{\beta}} _{\bf{0}}} $下的物体运动轨迹
图 6  不同 ${{\boldsymbol{\beta}} _{\bf{0}}}$下 ${{\boldsymbol{\delta}} _{{{\bf{r}}}}}$随N的变化曲线
图 7  沉降速度随流体黏度的变化曲线
图 8   $ {\alpha _0}{\text{ = }}{\boldsymbol{1}} $时的圆球运动轨迹
图 9  当ε= 2,α0= 1时 $ f $随τ的变化曲线
图 10   $\;{{\boldsymbol{\beta }}}_{{\bf{0}}} = {\boldsymbol{\pm 1}}、{{\boldsymbol{\alpha}} }_{{\bf{0}}}\text{\;=\;}{{\boldsymbol{\gamma }}}_{{\bf{0}}}\text{\;=\;{\bf{0}}}$时的圆球运动轨迹
图 11   ${{\boldsymbol{\gamma}} }_{{\bf{0}}}={\boldsymbol{\pm 1}}、{{\boldsymbol{\alpha}} }_{{\bf{0}}}\text{\;=\;}{{\boldsymbol{\beta}} }_{{\bf{0}}}\text{\;=\;{\bf{0}}}$时的圆球运动轨迹
1 PHILLIPS E. De l’equilibre des solides elastiques semblables [M]. Paris: C. R. Academie des Sciences, 1869.
2 CANDIA G, MIKOLA R G, SITAR N Seismic response of retaining walls with cohesive backfill: centrifuge model studies[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 411- 419
doi: 10.1016/j.soildyn.2016.09.013
3 ARDIA P, GIORDANO D, SCHMIDT M W A model for the viscosity of rhyolite as a function of H2O-content and pressure: a calibration based on centrifuge piston cylinder experiments[J]. Geochimica et Cosmochimica Acta, 2008, 72 (24): 6103- 6123
doi: 10.1016/j.gca.2008.08.025
4 SASSA S, SEKIGUCHI H Wave-induced liquefaction of beds of sand in a centrifuge[J]. Geotechnique, 1999, 49 (5): 621- 638
doi: 10.1680/geot.1999.49.5.621
5 孔令刚, 姚宏波, 詹良通, 等 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报: 工学版, 2017, 51 (5): 847- 855
KONG Ling-gang, YAO Hong-bo, ZHAN Liang-tong, et al Effect of water content on failure modes of evapotranspiration landfill cover[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 847- 855
6 何奔, 王欢, 洪义, 等 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报: 工学版, 2016, 50 (7): 1221- 1229
HE Ben, WANG Huan, HONG Yi, et al Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (7): 1221- 1229
7 SUÑOL F, GONZÃLEZ-CINCA R Effects of gravity level on bubble formation and rise in low-viscosity liquids[J]. Physical Review E, 2015, 91 (5): 053009
doi: 10.1103/PhysRevE.91.053009
8 马立秋, 张建民, 张武 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32 (9): 272- 278
MA Li-qiu, ZHANG Jian-ming, ZHANG Wu Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32 (9): 272- 278
doi: 10.16285/j.rsm.2011.09.004
9 陈云敏 离心超重力实验: 探索多相介质演变的革命性手段[J]. 浙江大学学报: 工学版, 2020, 54 (4): 631- 632
CHEN Yun-min Centrifugal hypergravity experiment: revolutionary means to explore the evolution of multiphase media[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 631- 632
10 FERREIRA R M L, FRANCA M J, LEAL J G A B, et al Mathematical modelling of shallow flows: closure models drawn from grain-scale mechanics of sediment transport and flow hydrodynamics[J]. Canadian Journal of Civil Engineering, 2009, 36 (10): 1605- 1621
doi: 10.1139/L09-033
11 康娅娟, 刘少军 深海采矿提升系统研究综述[J]. 机械工程学报, 2021, 57 (20): 232- 243
KANG Ya-juan, LIU Shao-jun Summary of research on lifting system of deep sea mining[J]. Journal of Mechanical Engineering, 2021, 57 (20): 232- 243
doi: 10.3901/JME.2021.20.232
12 刘宝镛 全尺寸模型弹水下发射试验的有关问题[J]. 导弹与航天运载技术, 2000, (4): 1- 4
LIU Bao-yong Problems on the underwater launching test of full scale model missile[J]. Missiles and Space Vehicles, 2000, (4): 1- 4
doi: 10.3969/j.issn.1004-7182.2000.04.001
13 姜欣. 水库悬浮物的环境特性及其水质影响研究[D]. 大连: 大连理工大学, 2019.
JIANG Xin. Environmental characteristics of suspended solids in reservoirs and their effects on water quality [D]. Dalian: Dalian University of Technology, 2019.
14 ZHAO L, GUO Z C, WANG Z, et al Influences of super-gravity field on aluminum grain refining[J]. Metallurgical and Materials Transactions, 2010, 41A (3): 670- 675
15 WILSON C. From Kepler to Newton: telling the tale [M]// The foundations of Newtonian scholarship. Singapore: World Scientific Publishing, 2000: 223-242.
16 PINES S Uniform representation of the gravitational potential and its derivatives[J]. AIAA Journal, 1973, 11 (11): 1508- 1511
doi: 10.2514/3.50619
17 王东明 利用地球重力位模型计算重力和重力梯度[J]. 地球物理学报, 1999, (Supple.1): 108- 114
WANG Dong-ming Computing earth’s gravity and gravity gradient using geopotential model[J]. Chinese Journal Geophysics, 1999, (Supple.1): 108- 114
18 KAUFMAN A A, HANSEN R O Gravitational field of the earth[J]. Methods in Geochemistry and Geophysics, 2007, 41: 59- 159
doi: 10.1016/S0076-6895(07)41003-4
19 包承纲, 饶锡保 土工离心模型的试验原理[J]. 长江科学院院报, 1998, 15 (2): 1- 3
BAO Cheng-gang, RAO Xi-bao Principle of the geotechnical centrifuge model test[J]. Journal of Yangtze River Scientific Research Institute, 1998, 15 (2): 1- 3
20 王巧莎. 超重环境下水波模拟与传播特性研究[D]. 绵阳: 中国工程物理研究院, 2019.
WANG Qiao-sha. Research on simulation and propagation characteristics of water waves in hypergravity environment [D]. Mianyang: China Academy of Engineering Physics, 2019.
21 SCHOFIELD A N. An introduction to centrifuge modeling [M]// Centrifuges in soil mechanics. Boca Raton: CRC Press, 2020: 1-9.
22 LEI G H, SHI J Physical meanings of kinematics in centrifuge modeling technique[J]. Rock and Soil Mechanics, 2003, 24 (2): 188- 193
23 凌道盛, 施昌宇, 郑建靖, 等 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43 (2): 226- 235
LING Dao-sheng, SHI Chang-yu, ZHENG Jian-jing, et al Non-inertial effects on matter motion in centrifugal model test[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (2): 226- 235
24 赵宇, 常胜, 郑建靖, 等 离心模拟超重力场下的雨滴运动轨迹分析[J]. 浙江大学学报: 工学版, 2021, 55 (3): 491- 499
ZHAO Yu, CHANG Sheng, ZHENG Jian-jing, et al Analysis of raindrop trajectory in centrifuge-simulated hypergravity field[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 491- 499
25 CAICEDO B, TRISTANCHO J, THOREL L Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15 (3): 150- 164
doi: 10.1680/jphmg.14.00023
26 MAXEMOW S That's a drag: the effects of drag forces[J]. Undergraduate Journal of Mathematical Modeling: One+ Two, 2009, 2 (1): 4
27 CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles [M]. New York: Academic Press, 1978.
[1] 林越,李洪宇,文艺成,邹彦超,杨少波,李醒飞. 深海自持式剖面浮标浮力变化规律[J]. 浙江大学学报(工学版), 2020, 54(7): 1440-1448.
[2] 赵艳龙,李醒飞,杨少波,李洪宇,徐佳毅,林越. 剖面浮标“浮星”可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1240-1248.
[3] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[4] 林勇刚,许建强,刘宏伟,李伟. 基于数字液压缸组的波浪能装置压力匹配[J]. 浙江大学学报(工学版), 2019, 53(10): 1892-1897.
[5] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[6] 范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇. 水下滑翔机关键承压系统设计与试验研究[J]. J4, 2014, 48(4): 633-640.
[7] 计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772.
[8] 赵伟, 杨灿军, 陈鹰. 水下滑翔机浮力调节系统设计及动态性能研究[J]. J4, 2009, 43(10): 1772-1776.
[9] 王桂荣 韦巍 屠旭永. EMS型磁浮列车驱动力和悬浮力的计算新方法[J]. J4, 2007, 41(3): 441-444.
[10] 周媛 贺益康 年珩. 永磁型无轴承电机的设计与控制研究[J]. J4, 2006, 40(1): 14-19.
[11] 年珩 贺益康. 永磁型无轴承电机的设计与运行分析[J]. J4, 2005, 39(6): 891-895.