Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1704-1716    DOI: 10.3785/j.issn.1008-973X.2024.08.017
交通工程、土木工程     
考虑层理倾角的炭质板岩蠕变损伤本构模型
胡涛涛1(),贺韶君1,王栋2
1. 长安大学 公路学院,陕西 西安 710064
2. 山东华宇工学院 能源与建筑工程学院,山东 德州 253034
Creep damage intrinsic model of carbonaceous slate considering laminar inclination
Taotao HU1(),Shaojun HE1,Dong WANG2
1. School of Highway, Chang'an University, Xi'an 710064, China
2. School of Energy and Architectural Engineering, Shandong Huayu Institute of Technology, Dezhou 253034, China
 全文: PDF(2035 KB)   HTML
摘要:

针对层状岩体的各向异性特征,以炭质板岩为研究对象,开展不同层理倾角炭质板岩的蠕变力学试验. 基于蠕变试验结果,建立可以描述不同层理倾角炭质板岩加速蠕变的改进Nishihara非线性损伤蠕变本构模型,推导该模型的一维、三维本构方程. 研究结果表明,炭质板岩的蠕变过程存在明显的应力阈值. 当应力小于阈值时,炭质板岩只发生衰减蠕变;当应力达到或大于阈值时,开始发生稳态蠕变;当应力达到或超过破坏应力时,炭质板岩发生加速蠕变并发生蠕变破坏. 模型参数反演辨识结果表明,改进Nishihara蠕变模型能够很好地描述炭质板岩的整个蠕变过程. 基于参数辨识结果,对模型参数与围压和层理倾角的关系进行探讨,得到损伤参数c与层理倾角的关系式,分析损伤参数d与黏滞系数对加速蠕变阶段的影响.

关键词: 炭质板岩层理倾角蠕变特性本构模型参数辨识    
Abstract:

Carbonaceous slate was taken as the research object and creep mechanical tests were conducted on carbonaceous slate with different bedding dip angles in response to the anisotropic characteristics of layered rock masses. An improved Nishihara nonlinear damage creep constitutive model that can describe the accelerated creep of carbonaceous slate with different bedding angles was established based on the creep test results. The one-dimensional and three-dimensional constitutive equations of the model were derived. Results show that there is a significant stress threshold in the creep process of carbonaceous slate. Only attenuation creep occurs in carbonaceous slate when the stress level is less than the threshold. Steady-state creep begins to occur when the stress level reaches or exceeds the threshold. The carbonaceous slate undergoes accelerated creep and creep failure when the stress level reaches or exceeds the failure stress. The inversion identification results of model parameters indicate that the improved Nishihara creep model can effectively describe the entire creep process of carbonaceous slate. The relationship between model parameters and confining pressure and bedding angle was discussed based on the parameter identification results. The relationship between damage parameter c and layer inclination angle was obtained. The effects of damage parameter d and viscosity coefficient to accelerate creep stage were analyzed.

Key words: carbonaceous slate    laminar inclination    creep characteristic    constitutive model    parameter identification
收稿日期: 2023-12-07 出版日期: 2024-07-23
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(52378388);长安大学中央高校基本科研业务费专项资金资助项目(300102213211).
作者简介: 胡涛涛(1985—),男,副教授,从事隧道工程的研究. orcid.org/0000-0002-7177-9344. E-mail:tthu@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡涛涛
贺韶君
王栋

引用本文:

胡涛涛,贺韶君,王栋. 考虑层理倾角的炭质板岩蠕变损伤本构模型[J]. 浙江大学学报(工学版), 2024, 58(8): 1704-1716.

Taotao HU,Shaojun HE,Dong WANG. Creep damage intrinsic model of carbonaceous slate considering laminar inclination. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1704-1716.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.017        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1704

图 1  不同层理倾角的试样破坏图片
θ/(°)p/MPaσt/MPa
第1级第2级第3级第4级第5级
051224364860
0101326395265
0151428425670
4510510151924
4515613192531
90101223354759
90151427415468
表 1  不同层理倾角炭质板岩的分级加载蠕变试验方案
图 2  0°层理倾角炭质板岩的分级加载蠕变曲线
图 3  45°层理倾角炭质板岩的分级加载蠕变曲线
图 4  90°层理倾角炭质板岩的分级加载蠕变曲线
图 5  弹塑性层状损伤元件
图 6  黏性损伤元件
图 7  改进Nishihara非线性黏弹塑性蠕变模型
图 8  Nishihara模型的示意图
图 9  传统和改进Nishihara蠕变模型的拟合曲线
p/MPaSij/MPaE1/GPaE2/GPaη1/(GPa·h)η2/(GPa·h)η3/(GPa·h)cdR2
51220.03149.57206.070.9996
2420.08154.47211.190.9966
3619.32222.34227.363580.580.9953
4818.75253.63311.7011902.830.9971
6018.31246.96174.45109.773.603 2×1050.00235.030.9997
101321.25188.53186.020.9854
2621.49187.59247.630.9909
3920.81273.81464.564284.290.9945
5220.36340.45226.5416819.230.9997
6519.99329.98174.83144.3833541.080.00862.220.9985
151421.89205.91312.290.9955
2822.41209.95329.290.9969
4222.31264.51661.2312515.250.9987
5620.98225.25564.5815635.210.9946
7020.12482.04356.82144.7031182.070.00371.740.9946
表 2  0°层理倾角炭质板岩改进Nishihara蠕变模型参数
p/MPaSij/MPaE1/GPaE2/GPaη1/(GPa·h)η2/(GPa·h)η3/(GPa·h)cdR2
1055.99123.77224.560.9987
107.6383.12176.430.9932
158.29201.24135.851241.020.9996
198.19143.2966.0112.083182.850.0115.670.9981
1567.0596.64117.560.9991
1310.22190.94393.470.9973
1911.67373.81222.532517.730.9992
2512.37183.29186.1455.313464.380.00952.220.9967
表 3  45°层理倾角炭质板岩改进Nishihara蠕变模型参数
p/MPaSij/MPaE1/GPaE2/GPaη1/(GPa·h)η2/(GPa·h)η3/(GPa·h)cdR2
101212.98136.51259.460.9968
2314.46155.12201.050.9982
3515.08202.90254.324438.780.9959
4715.23580.14225.9335.996679.860.01082.240.9981
151413.70323.48550.760.9947
2715.87276.99159.380.9978
4116.82367.70507.975322.290.9993
5417.09769.91525.6968.5722744.760.001035.310.9997
表 4  90°层理倾角炭质板岩改进Nishihara蠕变模型参数
图 10  损伤参数d随层理倾角的变化规律
图 11  损伤参数d随围压的变化规律
图 12  损伤参数c随层理倾角的变化规律
图 13  损伤参数c随围压的变化规律
图 14  改进Nishihara蠕变模型参数与围压的关系
图 15  改进Nishihara蠕变模型参数与层理倾角的关系
图 16  损伤参数d对加速蠕变的影响
图 17  蠕变速率η3对加速蠕变的影响
1 赵勐, 肖明, 陈俊涛, 等 考虑互层状岩体接触状态的地下洞室围岩稳定分析[J]. 东北大学学报: 自然科学版, 2022, 43 (2): 243- 250
ZHAO Meng, XIAO Ming, CHEN Juntao, et al Stability analysis of underground cavern surrounding rock considering the contact state of interlayered rock body[J]. Journal of Northeastern University: Natural Science, 2022, 43 (2): 243- 250
2 朱秋雷. 千枚岩强度参数各向异性及对隧道围岩大变形的影响[D]. 成都: 成都理工大学, 2019.
ZHU Qiulei. Anisotropy of strength parameters of thousand rocks and their influence on large deformation of surrounding rock of tunnel [D]. Chengdu: Chengdu University of Technology, 2019.
3 魏心声. 秦巴山区云母石英片岩蠕变力学特性研究[D]. 西安: 长安大学, 2015.
WEI Xinsheng. Study on creep mechanical properties of mica quartz schist in Qinba Mountain [D]. Xi’an: Chang’an University, 2015.
4 XU Huichen, ZHANG Yong, ZHAO Chengwei, et al Creep structure effect of layered rock mass based on acoustic emission characteristics[J]. Shock and Vibration, 2021, 2021: 1- 14
5 范庆忠, 高延法 分级加载条件下岩石流变特性的试验研究[J]. 岩土工程学报, 2005, 27 (11): 4
FAN Qingzhong, GAO Yanfa Experimental study of rock rheological properties under graded loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (11): 4
6 李永盛 单轴压缩条件下四种岩石的蠕变和松弛试验研究[J]. 岩石力学与工程学报, 1995, 14 (1): 9
LI Yongsheng Experimental study on creep and relaxation of four rocks under uniaxial compression conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14 (1): 9
7 徐卫亚, 黄威, 张涛, 等 含软弱夹层的层状岩体流变力学特性试验[J]. 河海大学学报: 自然科学版, 2020, 48 (4): 7
XU Weiya, HUANG Wei, ZHANG Tao, et al Test of rheological mechanical properties of layered rock mass with soft interbed[J]. Journal of Hohai University: Natural Sciences, 2020, 48 (4): 7
8 胡涛涛, 康志斌, 陈建勋, 等 含软弱夹层炭质板岩单轴压缩力学行为模拟研究[J]. 应用力学学报, 2021, 38 (4): 1580- 1587
HU Taotao, KANG Zhibin, CHEN Jianxun, et al Simulation study on uniaxial compressive mechanical behavior of carbonaceous slate with weak interbed[J]. Chinese Journal of Applied Mechanics, 2021, 38 (4): 1580- 1587
9 周晓飞, 孙金山, 刘贵应, 等 基于幂函数的边坡岩体泥质夹层长期强度直剪蠕变试验研究[J]. 安全与环境工程, 2018, 25 (1): 6- 11
ZHOU Xiaofei, SUN Jinshan, LIU Guiying, et al Experimental study on long-term strength direct shear creep of argillaceous interlayer of slope rock mass based on power function[J]. Safety and Environmental Engineering, 2018, 25 (1): 6- 11
10 LI Maotong, LI Kesheng, ZHANG Deng, et al Study on creep characteristics and constitutive relation of fractured rock mass[J]. Shock and Vibration, 2020, 2020: 1- 14
11 宋洋, 李永启, 王韦颐, 等 加锚节理岩体剪切蠕变特性及其本构模型分析[J]. 煤炭学报, 2020, 45 (4): 10
SONG Yang, LI Yongqi, WANG Weiyi, et al Shear creep characteristics of anchored joint rock mass and its constitutive model analysis[J]. Journal of China Coal Society, 2020, 45 (4): 10
12 赵晨阳, 雷明锋, 贾朝军, 等 含软弱结构面岩体蠕变力学模型[J]. 中南大学学报: 自然科学版, 2021, 52 (10): 3541- 3549
ZHAO Chenyang, LEI Mingfeng, JIA Chaojun, et al Creep mechanical model of rock mass with soft structural surface[J]. Journal of Central South University: Science and Technology, 2021, 52 (10): 3541- 3549
13 TRZECIAK M, SONE H, DABROWSKI M Long-term creep tests and viscoelastic constitutive modeling of lower paleozoic shales from the baltic basin, N poland[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 139- 157
doi: 10.1016/j.ijrmms.2018.10.013
14 LV S, WANG W, LIU H A creep damage constitutive model for a rock mass with nonpersistent joints under uniaxial compression[J]. Mathematical Problems in Engineering, 2019, 2019: 1- 11
15 TIAN Y, CHEN W Z, TIAN H M Analytical model of layered rock considering its time-dependent behaviour[J]. Rock Mechanics and Rock Engineering, 2021, 54 (11): 5937- 5944
doi: 10.1007/s00603-021-02421-2
16 张向东, 傅强 冻土三轴蠕变特性试验研究及平面冻土墙厚度的确定[J]. 岩土力学, 2011, 32 (8): 6
ZHANG Xiangdong, FU Qiang Experimental study on triaxial creep characteristics of frozen soil and determination of thickness of flat frozen soil wall[J]. Rock and Soil Mechanics, 2011, 32 (8): 6
17 周传涛, 田文岭, 甄治国, 等 含不同层理倾角黄砂岩损伤破裂机理研究[J]. 实验技术与管理, 2023, 40 (3): 26- 31
ZHOU Chuantao, TIAN Wenling, ZHEN Zhiguo, et al Study on the damage and rupture mechanism of yellow sandstone with different laminar dip angles[J]. Experimental Technology and Management, 2023, 40 (3): 26- 31
18 刘开云, 薛永涛, 周辉 基于改进Bingham模型的软岩参数非定常三维非线性黏弹塑性蠕变本构研究[J]. 岩土力学, 2018, 39 (11): 4157- 4164
LIU Kaiyun, XUE Yongtao, ZHOU Hui Research on unsteady three-dimensional nonlinear viscoelastic plastic creep constitutive behavior of soft rock parameters based on improved Bingham model[J]. Rock and Soil Mechanics, 2018, 39 (11): 4157- 4164
19 HE Zhilei, ZHU Zhende, NI Xiaohui, et al Shear creep tests and creep constitutive model of marble with structural plane[J]. European Journal of Environmental and Civil Engineering, 2017, 23 (11): 1275- 1293
20 刘天毅. 高温后层状砂岩各向异性蠕变特性及本构模型研究[D]. 成都: 成都理工大学, 2017.
LIU Tianyi. Study on anisotropic creep characteristics and constitutive model of layered sandstone after high temperature [D]. Chengdu: Chengdu University of Technology, 2017.
21 谢云鹏. 化学侵蚀环境下不同层理倾角的深部炭质板岩蠕变特性研究[D]. 湘潭: 湖南科技大学, 2021.
XIE Yunpeng. Study on creep characteristics of deep carbonaceous slate at different strata inclination angles under chemical erosion environment [D]. Xiangtan: Hunan University of Science and Technology, 2021.
22 杨俊涛, 宋彦琦, 马宏发, 等 考虑硬化和损伤效应的盐岩蠕变本构模型研究[J]. 岩土力学, 2023, 44 (10): 2953- 2966
YANG Juntao, SONG Yanqi, MA Hongfa, et al Research on creep constitutive model of salt rock considering hardening and damage effects[J]. Rock and Soil Mechanics, 2023, 44 (10): 2953- 2966
23 张志强, 朱星宇, 刘新华 橄榄岩蠕变特性及本构模型研究[J]. 岩石力学与工程学报, 2022, 41 (8): 1525- 1535
ZHANG Zhiqiang, ZHU Xingyu, LIU Xinhua Study on creep characteristics and constitutive models of peridotite[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (8): 1525- 1535
24 张亮亮, 王晓健 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报, 2020, 42 (6): 1085- 1092
ZHANG Liangliang, WANG Xiaojian Research on creep model of rock viscoelastic plastic damage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (6): 1085- 1092
[1] 许明,张帝,戎铖,苏礼荣,王万强. 基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模[J]. 浙江大学学报(工学版), 2022, 56(8): 1560-1567, 1621.
[2] 陈绍祥,曹志刚,叶星池,蔡袁强,张琪. 考虑温度效应的路基粗粒填料亚塑性模型[J]. 浙江大学学报(工学版), 2022, 56(5): 938-946, 976.
[3] 蒋佳琪,徐日庆,裘志坚,詹晓波,汪悦,成广谋. 超固结土的蛋形弹塑性本构模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1444-1452.
[4] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[5] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[6] 张静,邹道勤,王海龙,孙晓燕. 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报(工学版), 2021, 55(11): 2178-2185.
[7] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.
[8] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[9] 雷燕云, 谢旭. 修正的Giuffre-Menegotto-Pinto钢筋滞回本构模型[J]. 浙江大学学报(工学版), 2018, 52(10): 1926-1934.
[10] 王海龙, 凌佳燕, 孙晓燕, 李晓滨. 不锈钢筋混凝土柱小偏心受压性能[J]. 浙江大学学报(工学版), 2018, 52(10): 1919-1925.
[11] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[12] 柯瀚, 董鼎, 陈云敏, 郭城, 冯世进. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164.
[13] 王凯, 姚文熙, 吕征宇. 基于直流偏置激励的异步电机离线参数自整定[J]. 浙江大学学报(工学版), 2015, 49(7): 1382-1387.
[14] 齐虎,李云贵,吕西林. 混凝土弹塑性损伤本构模型参数及其工程应用[J]. 浙江大学学报(工学版), 2015, 49(3): 547-554.
[15] 赵增辉, 王渭明, 高鑫, 严纪兴. 弱胶结泥质软岩的三向压缩损伤特性[J]. 浙江大学学报(工学版), 2014, 48(8): 1399-1405.