自动化技术 |
|
|
|
|
时序基因驱动的特征表示模型 |
黄建平1( ),陈可2,张建松1,沈思琪1 |
1. 国网浙江省电力有限公司,浙江 杭州 310063 2. 国网浙江省电力有限公司信息通信分公司,浙江 杭州 310016 |
|
Time-series gene driven feature representation model |
Jian-ping HUANG1( ),Ke CHEN2,Jian-song ZHANG1,Si-qi SHEN1 |
1. Net Zhejiang Electric Power Limited Company, Hangzhou 310063, China 2. Information Communication Branch, Net Zhejiang Electric Power Limited Company, Hangzhou 310016, China |
引用本文:
黄建平,陈可,张建松,沈思琪. 时序基因驱动的特征表示模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1354-1364.
Jian-ping HUANG,Ke CHEN,Jian-song ZHANG,Si-qi SHEN. Time-series gene driven feature representation model. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1354-1364.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.010
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1354
|
1 |
BARBOSA S, COSLEY D, SHARMA A, et al. Averaging gone wrong: using time-aware analyses to better understand behavior [C]// Proceedings of the 25th International Conference on World Wide Web. Montréal: ACM, 2016: 829-841.
|
2 |
CHAPFUWA P, TAO C, LI C, et al. Adversarial time-to-event modeling [C]// International Conference on Machine Learning. Stockholm: ACM, 2018: 735-744.
|
3 |
DU N, DAI H, TRIVEDI R, et al. Recurrent marked temporal point processes: Embedding event history to vector [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1555-1564.
|
4 |
JANAKIRAMAN V M, MATTHEWS B, OZA N. Finding precursors to anomalous drop in airspeed during a flight's takeoff [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: ACM, 2017: 1843-1852.
|
5 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL] . [2023-04-27]. https://arxiv.org/abs/1312.6114.
|
6 |
BOUTTEFROY P L M, BOUZERDOUM A, PHUNG S L, et al. On the analysis of background subtraction techniques using Gaussian mixture models [C]// 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas: IEEE, 2010: 4042-4045.
|
7 |
YANG Y, JIANG J HMM-based hybrid meta-clustering ensemble for temporal data[J]. Knowledge-based Systems, 2014, 56: 299- 310
doi: 10.1016/j.knosys.2013.12.004
|
8 |
LINES J, BAGNALL A Time series classification with ensembles of elastic distance measures[J]. Data Mining and Knowledge Discovery, 2015, 29 (3): 565- 592
doi: 10.1007/s10618-014-0361-2
|
9 |
BATISTA G E, KEOGH E J, TATAW O M, et al CID: an efficient complexity-invariant distance for time series[J]. Data Mining and Knowledge Discovery, 2014, 28 (3): 634- 669
doi: 10.1007/s10618-013-0312-3
|
10 |
ALTHOFF T, HORVITZ E, WHITE R W, et al. Harnessing the web for population-scale physiological sensing: a case study of sleep and performance [C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 113-122.
|
11 |
PIERSON E, ALTHOFF T, LESKOVEC J. Modeling individual cyclic variation in human behavior [C]// Proceedings of the 2018 World Wide Web Conference. Lyon: ACM, 2018: 107-116.
|
12 |
BULL J R, ROWLAND S P, SCHERWITZL E B, et al. Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles [J]. NPJ Digital Medicine, 2019, 2(1): 83.
|
13 |
STEFAN A, ATHITSOS V, DAS G The move-split-merge metric for time series[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 25 (6): 1425- 1438
|
14 |
BAYTAS I M, XIAO C, ZHANG X, et al. Patient subtyping via time-aware LSTM networks [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: ACM, 2017: 65-74.
|
15 |
BAYDOGAN M G, RUNGER G Time series representation and similarity based on local autopatterns[J]. Data Mining and Knowledge Discovery, 2016, 30 (2): 476- 509
doi: 10.1007/s10618-015-0425-y
|
16 |
KURASHIMA T, ALTHOFF T, LESKOVEC J. Modeling interdependent and periodic real-world action sequences [C]// Proceedings of the 2018 World Wide Web Conference. Lyon: ACM, 2018: 803-812.
|
17 |
LIN J, KHADE R, LI Y Rotation-invariant similarity in time series using bag-of-patterns representation[J]. Journal of Intelligent Information Systems, 2012, 39 (2): 287- 315
doi: 10.1007/s10844-012-0196-5
|
18 |
XU H, CHEN W, ZHAO N, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications [C]// Proceedings of the 2018 World Wide Web Conference. Lyon: ACM, 2018: 187-196.
|
19 |
RAJAN D, THIAGARAJAN J J. A generative modeling approach to limited channel ECG classification [C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Hawaii: IEEE, 2018: 2571-2574.
|
20 |
LIU C L, HSAIO W H, TU Y C Time series classification with multivariate convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (6): 4788- 4797
|
21 |
ZHANG X, GAO Y, LIN J, et al. Tapnet: multivariate time series classification with attentional prototypical network [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020, 34(4): 6845-6852.
|
22 |
SHOKOOHI-YEKTA M, CHEN Y, CAMPANA B, et al. Discovery of meaningful rules in time series [C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: ACM, 2015: 1085-1094.
|
23 |
WU T, GLEICH D F. Retrospective higher-order markov processes for user trails [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: ACM, 2017: 1185-1194.
|
24 |
BINKOWSKI M, MARTI G, DONNAT P. Autoregressive convolutional neural networks for asynchronous time series [C]// International Conference on Machine Learning. Stockholm: ACM, 2018: 580-589.
|
25 |
WANG J, WANG Z, LI J, et al. Multilevel wavelet decomposition network for interpretable time series analysis [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 2437-2446.
|
26 |
WANG Y, GAO Z, LONG M, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning [C]// International Conference on Machine Learning. Stockholm: ACM, 2018: 5123-5132.
|
27 |
ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI, 2021, 35(12): 11106-11115.
|
28 |
ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting [EB/OL]. [2023-04-27]. https://arxiv.org/abs/2201.12740.
|
29 |
YUE Z, WANG Y, DUAN J, et al. TS2Vec: towards universal representation of time series [EB/OL]. [2023-04-27]. https://arxiv.org/abs/2106.10466.
|
30 |
SHANG C, CHEN J, BI J. Discrete graph structure learning for forecasting multiple time series [EB/OL]. [2023-04-27]. https://arxiv.org/abs/2101.06861.
|
31 |
CAO D, WANG Y, DUAN J, et al Spectral temporal graph neural network for multivariate time-series forecasting[J]. Advances in Neural Information Processing Systems, 2020, 33: 17766- 17778
|
32 |
ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks [EB/OL]. [2023-04-27]. https://arxiv.org/abs/1701.04862.
|
33 |
KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation [EB/OL]. [2023-04-27]. https://arxiv.org/abs/1710.10196.
|
34 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27: 2672- 2680
|
35 |
BAO J, CHEN D, WEN F, et al. CVAE-GAN: fine-grained image generation through asymmetric training [C]// Proceedings of the IEEE International Conference on Computer Vision. Cambridge: IEEE, 2017: 2745-2754.
|
36 |
ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs [C]// International Conference on Machine Learning. Sydney: ACM, 2017: 2642-2651.
|
37 |
SOHN K, LEE H, YAN X Learning structured output representation using deep conditional generative models[J]. Advances in Neural Information Processing Systems, 2015, 28: 3483- 3491
|
38 |
MESCHEDER L, GEIGER A, NOWOZIN S. Which training methods for GANs do actually converge? [C]// International Conference on Machine Learning. Stockholm: ACM, 2018: 3481-3490.
|
39 |
GUI J, SUN Z, WEN Y, et al A review on generative adversarial networks: algorithms, theory, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35: 3313- 3332
|
40 |
SAXENA D, CAO J Generative adversarial networks (GANs) challenges, solutions, and future directions[J]. ACM Computing Surveys, 2021, 54 (3): 1- 42
|
41 |
ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1125-1134.
|
42 |
LIU M Y, TUZEL O Coupled generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2016, 29: 469- 477
|
43 |
EHSANI K, MOTTAGHI R, FARHADI A. Segan: segmenting and generating the invisible [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6144-6153.
|
44 |
BALAJI Y, MIN M R, BAI B, et al. Conditional GAN with discriminative filter generation for text-to-video synthesis [C]// International Joint Conferences on Artificial Intelligence. Macao: Morgan Kaufmann, 2019, 28: 1995-2001.
|
45 |
ZHANG H, XU T, LI H, et al. StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks [C]// Proceedings of the IEEE International Conference on Computer Vision. Honolulu: IEEE, 2017: 5907-5915.
|
46 |
JIN G, WANG Q, ZHAO X, et al. Crime-GAN: a context-based sequence generative network for crime forecasting with adversarial loss [C]// 2019 IEEE International Conference on Big Data. Los Angeles: IEEE, 2019: 1460-1469.
|
47 |
KOSARAJU V, SADEGHIAN A, MARTÍN-MARTÍN R, et al Social-bigat: multimodal trajectory forecasting using bicycle-gan and graph attention networks[J]. Advances in Neural Information Processing Systems, 2019, 32: 137- 146
|
48 |
WANG H, WANG J, WANG J, et al. GraphGAN: graph representation learning with generative adversarial nets (2017) [EB/OL]. [2023-04-27]. https://arxiv.org/abs/1711.08267.
|
49 |
BAGNALL A, LINES J, BOSTROM A, et al The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2017, 31 (3): 606- 660
doi: 10.1007/s10618-016-0483-9
|
50 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al Improved training of Wasserstein GANs[J]. Advances in Neural Information Processing Systems, 2017, 30: 5769- 5779
|
51 |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks [C]// European Conference on Computer Vision. Zurich: Springer, 2014: 818-833.
|
52 |
LIU C, HOI S C H, ZHAO P, et al. Online arima algorithms for time series prediction [C]// 30th AAAI Conference on Artificial Intelligence. Phoenix: AAAI, 2016 : 1867-1873.
|
53 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
54 |
YU H F, RAO N, DHILLON I S Temporal regularized matrix factorization for high-dimensional time series prediction[J]. Advances in Neural Information Processing Systems, 2016, 29: 847- 855
|
55 |
BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series [C]// Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Seattle: ACM, 1994: 359-370.
|
56 |
BATISTA G E, WANG X, KEOGH E J. A complexity-invariant distance measure for time series [C]// Proceedings of the 2011 SIAM International Conference on Data Mining. Mesa: SIAM, 2011: 699-710.
|
57 |
RAKTHANMANON T, KEOGH E. Fast shapelets: a scalable algorithm for discovering time series shapelets [C]// Proceedings of the 2013 SIAM International Conference on Data Mining. Austin: SIAM, 2013: 668-676.
|
58 |
DENG H, RUNGER G, TUV E, et al A time series forest for classification and feature extraction[J]. Information Sciences, 2013, 239: 142- 153
doi: 10.1016/j.ins.2013.02.030
|
59 |
SENIN P, MALINCHIK S. Sax-VSM: interpretable time series classification using sax and vector space model [C]// 2013 IEEE 13th International Conference on Data Mining. Dallas: IEEE, 2013: 1175-1180.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|