土木与建筑工程 |
|
|
|
|
基于孔隙压力黏结单元的准脆性材料水力劈裂模拟 |
喻渴来1( ),杨贞军2,*( ),张昕1,刘国华1,李辉2 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 武汉大学 土木建筑工程学院 湖北省岩土与结构安全重点实验室,湖北 武汉 430072 |
|
Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements |
Ke-lai YU1( ),Zhen-jun YANG2,*( ),Xin ZHANG1,Guo-hua LIU1,Hui LI2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Hubei Key Laboratory of Geotechnical and Structural Safety, School of Civil Engineering, Wuhan University, Wuhan 430072, China |
引用本文:
喻渴来,杨贞军,张昕,刘国华,李辉. 基于孔隙压力黏结单元的准脆性材料水力劈裂模拟[J]. 浙江大学学报(工学版), 2021, 55(11): 2151-2160.
Ke-lai YU,Zhen-jun YANG,Xin ZHANG,Guo-hua LIU,Hui LI. Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2151-2160.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.016
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2151
|
1 |
JIA J S, LI X, ZHENG C Y Studies on safety problem of high gravity dams higher than 200 m with consideration of hydraulic fracturing under water pressure[J]. Journal of Hydraulic Engineering, 2006, 37 (12): 1509- 1515
|
2 |
BRUHWILER E, SAOUMA V E Water fracture interaction in concrete. part I: fracture properties[J]. Aci Materials Journal, 1995, 92 (3): 296- 303
|
3 |
BRUHWILER E, SAOUMA V E Water fracture interaction in concrete. Part II: hydrostatic pressure in crack[J]. Aci Materials Journal, 1995, 92 (4): 383- 390
|
4 |
SLOWIK V, SAOUMA V E Water pressure in propagating concrete cracks[J]. Journal of Structural Engineering, 2000, 126 (2): 235- 242
doi: 10.1061/(ASCE)0733-9445(2000)126:2(235)
|
5 |
徐世烺, 王建敏 静水压力下混凝土双K断裂参数试验测定[J]. 水利学报, 2007, 38 (7): 792- 798 XU Shi-lang, WANG Jian-min Experimental determination of double-K fracture parameters of concrete under water pressure[J]. ShuiLi XueBao, 2007, 38 (7): 792- 798
doi: 10.3321/j.issn:0559-9350.2007.07.005
|
6 |
杜成斌, 陈小翠, 陈玉泉, 等 混凝土水力劈裂试验研究[J]. 水利学报, 2017, 48 (9): 1047- 1054 DU Cheng-bin, CHEN Xiao-cui, CHEN Yu-quan, et al Experimental research on hydraulic fracture of concrete[J]. ShuiLi XueBao, 2017, 48 (9): 1047- 1054
|
7 |
甘磊, 沈心哲, 王瑞, 等 单裂缝混凝土结构水力劈裂试验[J]. 水利水电科技进展, 2017, 37 (4): 30- 35 GAN Lei, SHEN Xin-zhe, WANG Rui, et al Hydraulic fracturing test of concrete structures with single crack[J]. Advances in Science and Technology of Water Resources, 2017, 37 (4): 30- 35
doi: 10.3880/j.issn.1006-7647.2017.04.006
|
8 |
甘磊, 沈振中, 张腾, 等 混凝土结构水力劈裂试验装置研究及应用[J]. 水利与建筑工程学报, 2015, 13 (4): 130- 136 GAN Lei, SHEN Zhen-zhong, ZHANG Teng, et al Research and application of a hydraulic fracturing test device for concrete structures[J]. Journal of Water Resources and Architectural Engineering, 2015, 13 (4): 130- 136
doi: 10.3969/j.issn.1672-1144.2015.04.026
|
9 |
REN Q W, DONG Y W, YU T T Numerical modeling of concrete hydraulic fracturing with extended finite element method[J]. Science in China Series E, 2009, 52 (3): 559- 565
doi: 10.1007/s11431-009-0058-8
|
10 |
GORDELIY E, PEIRCE A Coupling schemes for modeling hydraulic fracture propagation using the XFEM.[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 305- 322
doi: 10.1016/j.cma.2012.08.017
|
11 |
FANG X J, JIN F Coupling model for interaction between fissure water and cracking in concrete[J]. Journal of Hydraulic Engineering, 2007, 38 (12): 1466- 1474
|
12 |
WANG K F, ZHANG Q, XIA X Z Modeling of hydraulic fracturing for concrete gravity dams under fluid structure interaction[J]. Applied Mathematics and Mechanics, 2015, 36 (9): 970- 980
|
13 |
SHENG M, LI G S Extended finite element modeling of hydraulic fracture propagation[J]. Engineering Mechanics, 2014, 31 (10): 123- 128
|
14 |
GUO J C, ZHAO X, ZHU H Y, et al Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 180- 188
doi: 10.1016/j.jngse.2015.05.008
|
15 |
GUO J C, LUO B, LAI J, et al Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method[J]. Engineering Fracture Mechanics, 2017, 186: 195- 207
doi: 10.1016/j.engfracmech.2017.10.013
|
16 |
SEGURA J M, CAROL I Numerical modeling of pressurized fracture evolution in concrete using zero-thickness interface elements[J]. Engineering Fracture Mechanics, 2010, 77 (9): 1386- 1399
doi: 10.1016/j.engfracmech.2010.03.014
|
17 |
YAO F, YANG Z J, HU Y J An SBFEM-based model for hydraulic fracturing in quasi-brittle materials[J]. Acta Mechanica Solida Sinica, 2018, 31 (4): 416- 432
doi: 10.1007/s10338-018-0029-3
|
18 |
SU X T, YANG Z J, CHEN J F, et al Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J]. International Journal of Solids and Structures, 2009, 46 (17): 3222- 3234
doi: 10.1016/j.ijsolstr.2009.04.013
|
19 |
SU X T, YANG Z J, LIU G H Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study[J]. International Journal of Solids and Structures, 2010, 47 (17): 2336- 2345
doi: 10.1016/j.ijsolstr.2010.04.031
|
20 |
SU X T, YANG Z J, LIU G H Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus[J]. Acta Mechanica Solida Sinica, 2010, 23 (3): 271- 282
doi: 10.1016/S0894-9166(10)60030-4
|
21 |
LI Y, LIU W, DENG J, et al A 2D explicit numerical scheme–based pore pressure cohesive zone model for simulating hydraulic fracture propagation in naturally fractured formation[J]. Energy Science and Engineering, 2019, 7 (1): 1527- 1543
|
22 |
VINH P N, HAOJIE L, TIMON R, et al Modelling hydraulic fractures in porous media using flow cohesive interface elements[J]. Engineering Geology, 2017, 225: 68- 82
doi: 10.1016/j.enggeo.2017.04.010
|
23 |
ECONOMIDES M J, NOLTE K G. Reservoir stimulation [M]. Old Tappan: Wiley Chichester, 2000.
|
24 |
PEIRCE A, DETOURNAY E An implicit level set method for modeling hydraulically driven fractures[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (33): 2858- 2885
|
25 |
BARANI O R, MAJIDAIE S, MOSALLANEJAD M Numerical modeling of water pressure in propagating concrete cracks[J]. Journal of Engineering Mechanics, 2016, 142 (4): 04016011
doi: 10.1061/(ASCE)EM.1943-7889.0001048
|
26 |
ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering [M]. New York: Wiley, 1999.
|
27 |
GEERTSMA, J, HAAFKENS R A comparison of the theories for predicting width and extent of vertical hydraulically induced fractures[J]. Journal of Energy Resources Technology, 1979, 101 (1): 8- 19
doi: 10.1115/1.3446866
|
28 |
LIU C, SHEN Z Z, GAN L, et al A hybrid finite volume and extended finite element method for hydraulic fracturing with cohesive crack propagation in quasi-brittle materials[J]. Materials, 2018, 11: 1921- 1932
doi: 10.3390/ma11101921
|
29 |
SHI F, WANG X, LIU C, et al An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64- 90
doi: 10.1016/j.engfracmech.2017.01.025
|
30 |
REN W, YANG Z J, SHARMA R, et al Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete[J]. Engineering Fracture Mechanics, 2015, 133: 24- 39
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|