Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (6): 1128-1134    DOI: 10.3785/j.issn.1008-973X.2021.06.013
能源工程、机械工程     
湍流火焰切向应变率的低维近似模型
任嘉豪(),王海鸥*(),邢江宽,罗坤,樊建人
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Lower-dimensional approximation models of tangential strain rate of turbulent flames
Jia-hao REN(),Hai-ou WANG*(),Jiang-kuan XING,Kun LUO,Jian-ren FAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1241 KB)   HTML
摘要:

利用理论方法,提出切向应变率二维与三维概率密度函数(PDF)之间的关系. 基于3种不同湍流强度的自由传播预混火焰直接数值模拟(DNS)数据库,建立人工神经网络(ANN)和随机森林(RF)模型,从低维量预测三维切向应变速率. 机器学习模型的输入特征包括组分质量分数、二维火焰面法向量梯度和二维速度梯度张量. 模型预测结果与DNS结果对比表明,理论模型预测的PDF与DNS的真实PDF吻合较好. RF模型的预测值与DNS实际值间的相关系数大于0.97,优于ANN模型. RF模型得到的PDF与真实PDF间的误差小于理论模型得到的PDF与真实PDF间的误差. RF模型能够由低维量准确预测三维切向应变率.

关键词: 湍流燃烧燃烧模型直接数值模拟切向应变率机器学习    
Abstract:

The relationship between two-dimensional (2D) and three-dimensional (3D) probability density functions (PDF) of tangential strain rate was proposed by theoretical method. Artificial neural network (ANN) and random forest (RF) models were developed to predict the 3D tangential strain rate from lower-dimensional quantities based on a direct numerical simulation (DNS) database of freely propagating premixed flames with three different turbulent intensities. The input features of the machine learning models include species mass fraction, 2D gradient of the flames normal vector and 2D velocity gradient tensor. The comparison of the model predictions and the DNS results showed that the PDF predicted by the theoretical model accorded with that of the DNS. The correlation coefficient of the RF predictions and actual values of the DNS was greater than 0.97, which was superior to that of the ANN model. The difference of the RF model predicted and actual PDF was smaller than that of the theoretical model predicted and actual PDF. 3D tangential strain rate can be accurately predicted by the RF model from lower-dimensional quantities.

Key words: turbulent combustion    combustion model    direct numerical simulation    tangential strain rate    machine learning
收稿日期: 2021-02-24 出版日期: 2021-07-30
CLC:  TK 5  
基金资助: 国家自然科学基金重大研究计划资助项目(91841302);国家自然科学基金资助项目(51976185)
通讯作者: 王海鸥     E-mail: renjh@zju.edu.cn;wanghaiou@zju.edu.cn
作者简介: 任嘉豪(1997—),男,硕士生,从事湍流燃烧的直接数值模拟及模型研究. orcid.org/0000-0001-7415-3147. E-mail: renjh@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
任嘉豪
王海鸥
邢江宽
罗坤
樊建人

引用本文:

任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.

Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.06.013        https://www.zjujournals.com/eng/CN/Y2021/V55/I6/1128

算例 u′/(m·s?1 lt /mm τe /ms Re Ka
L 0.78 0.66 0.85 33 38
M 3.88 0.66 0.17 163 390
H 9.70 0.66 0.07 408 1710
表 1  DNS参数
图 1   $x{\text{-}}y$平面过程变量切片
图 2  坐标系示意图
图 3  机器学习模型的拓扑结构
图 4  理论模型预测概率密度函数与二维、三维真实概率密度函数的对比
图 5  模型超参数调优结果
图 6  测试样本预测值与真实值的散点关系图
模型 算例 R R2 MAPE /%
ANN L 0.908 0.822 22.15
ANN M 0.818 0.669 53.43
ANN H 0.792 0.623 71.82
RF L 0.997 0.994 4.14
RF M 0.984 0.968 11.73
RF H 0.981 0.960 16.23
表 2  ANN模型和RF模型性能的对比
图 7  RF模型测试样本预测概率密度函数与二维、三维真实概率密度函数的对比
图 8  基于RF模型的特征重要性分析
1 DRISCOLL J F, CHEN J H, SKIBA A W, et al Premixed flames subjected to extreme turbulence: some questions and recent answers[J]. Progress in Energy and Combustion Science, 2020, 76 (1): 100802
2 WANG J, ZHANG M, HUANG Z, et al Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure[J]. Combustion and Flame, 2013, 160 (11): 2434- 2441
doi: 10.1016/j.combustflame.2013.06.008
3 WANG H, HAWKES E R, CHEN J H Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame[J]. Physics of Fluids, 2016, 28 (9): 095107
doi: 10.1063/1.4962501
4 WANG H, HAWKES E R, CHEN J H A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame [J]. Combustion and Flame, 2017, 180 (6): 110- 123
5 WANG H, HAWKES E R, CHEN J H, et al Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame: an analysis of flame stretch and flame thickening[J]. Journal of Fluid Mechanics, 2017, 815 (2): 511- 536
6 ZHANG Q, SHANBHOGUE S J, LIEUWEN T, et al Strain characteristics near the flame attachment point in a swirling flow[J]. Combustion Science and Technology, 2011, 183 (7): 665- 685
doi: 10.1080/00102202.2010.537288
7 STEINBERG A M, DRISCOLL J F Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics[J]. Combustion and Flame, 2009, 156 (12): 2285- 2306
doi: 10.1016/j.combustflame.2009.06.024
8 DONBAR J M, DRISCOLL J F, CARTER C D Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flames[J]. Combustion and Flame, 2001, 125 (4): 1239- 1257
doi: 10.1016/S0010-2180(01)00246-2
9 KARPETIS A N, BARLOW R S Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames[J]. Proceedings of the Combustion Institute, 2005, 30 (1): 665- 672
doi: 10.1016/j.proci.2004.08.222
10 KARPETIS A N, BARLOW R S Measurements of scalar dissipation in a turbulent piloted methane/air jet flame[J]. Proceedings of the Combustion Institute, 2002, 29 (2): 1929- 1936
doi: 10.1016/S1540-7489(02)80234-6
11 ZHANG M, WANG J, JIN W, et al Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame[J]. Combustion and Flame, 2015, 162 (5): 2087- 2097
doi: 10.1016/j.combustflame.2015.01.007
12 HAWKES E R, SANKARAN R, CHEN J H, et al An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 1455- 1463
doi: 10.1016/j.proci.2008.06.122
13 VEYNANTE D, LODATO G, DOMINGO P, et al Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion[J]. Experiments in Fluids, 2010, 49 (1): 267- 278
doi: 10.1007/s00348-010-0851-y
14 HAWKES E R, SANKARAN R, CHEN J H Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements[J]. Proceedings of the Combustion Institute, 2011, 33 (1): 1447- 1454
doi: 10.1016/j.proci.2010.06.019
15 CHAKRABORTY N, KOLLA H, SANKARAN R, et al Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: direct numerical simulation based validation[J]. Proceedings of the Combustion Institute, 2013, 34 (1): 1151- 1162
doi: 10.1016/j.proci.2012.06.040
16 CHAKRABORTY N, HARTUNG G, KATRAGADDA M, et al Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data[J]. Combustion and Flame, 2011, 158 (7): 1372- 1390
doi: 10.1016/j.combustflame.2010.11.014
17 PETERS N. Turbulent combustion [M]. Cambridge: Cambridge University Press, 2001.
18 CHEN J H, CHOUDHARY A, DE SUPINSKI B, et al Terascale direct numerical simulations of turbulent combustion using S3D[J]. Computational Science and Discovery, 2009, 2 (1): 015001
doi: 10.1088/1749-4699/2/1/015001
19 CHAKRABORTY N, CANT R S Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime[J]. Physics of Fluids, 2005, 17 (10): 105105
doi: 10.1063/1.2084231
20 RUMELHART D E, HINTON G E, WILLIAMS R J Learning representations by back-propagating errors[J]. Nature, 1986, 323 (6088): 533- 536
doi: 10.1038/323533a0
21 GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016.
22 BREIMAN L Random forests[J]. Machine Learning, 2001, 45 (1): 5- 32
doi: 10.1023/A:1010933404324
23 XING J, LUO K, PITSCH H, et al Predicting kinetic parameters for coal devolatilization by means of artificial neural networks[J]. Proceedings of the Combustion Institute, 2018, 37 (3): 1- 8
24 WANG Z, LUO K, LI D, et al Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation[J]. Physics of Fluids, 2018, 30 (12): 125101
doi: 10.1063/1.5054835
25 XING J, WANG H, LUO K, et al Predictive single-step kinetic model of biomass devolatilization for CFD applications: a comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)[J]. Renewable Energy, 2019, 136 (6): 104- 114
[1] 高一聪,王彦坤,费少梅,林琼. 基于迁移学习的机械制图智能评阅方法[J]. 浙江大学学报(工学版), 2022, 56(5): 856-863, 889.
[2] 黄发明,潘李含,姚池,周创兵,姜清辉,常志璐. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713.
[3] 战友,李强,马啸天,王郴平,邱延峻. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
[4] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[5] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[6] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[7] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[8] 万志远,陶嘉恒,梁家坤,才振功,苌程,乔林,周巧妮. Stack Overflow上机器学习相关问题的大规模实证研究[J]. 浙江大学学报(工学版), 2019, 53(5): 819-828.
[9] 柯懂湘,潘丽敏,罗森林,张寒青. 基于随机森林算法的Android恶意行为识别与分类方法[J]. 浙江大学学报(工学版), 2019, 53(10): 2013-2023.
[10] 忽丽莎, 王素贞, 陈益强, 高晨龙, 胡春雨, 蒋鑫龙, 陈振宇, 高兴宇. 基于可穿戴设备的跌倒检测算法综述[J]. 浙江大学学报(工学版), 2018, 52(9): 1717-1728.
[11] 王洪凯, 陈中华, 周纵苇, 李迎辞, 陆佩欧, 王文志, 刘宛予, 于丽娟. 机器学习算法诊断PET/CT纵膈淋巴结性能评估[J]. 浙江大学学报(工学版), 2018, 52(4): 788-797.
[12] 吴鹏洲,于慧敏,曾雄. 基于正则化风险最小化的目标计数[J]. 浙江大学学报(工学版), 2014, 48(7): 1226-1233.
[13] 余钊圣, 王宇, 邵雪明, 吴腾虎. 中性悬浮大颗粒对湍槽流影响的数值研究[J]. J4, 2013, 47(1): 109-115.
[14] 陈凯,余钊圣,邵雪明. 多孔介质方腔自然对流的直接数值模拟[J]. J4, 2012, 46(3): 549-554.
[15] 宓云軿 王晓萍 金鑫. 基于机器学习的水质COD预测方法[J]. J4, 2008, 42(5): 790-793.