| 计算机技术、控制工程 |
|
|
|
|
| 基于时空注意力机制的轻量级脑纹识别算法 |
方芳( ),严军,郭红想,王勇*( ) |
| 中国地质大学(武汉) 机械与电子信息学院,湖北 武汉 430074 |
|
| Lightweight brainprint recognition algorithm based on spatio-temporal attention mechanism |
Fang FANG( ),Jun YAN,Hongxiang GUO,Yong WANG*( ) |
| College of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China |
引用本文:
方芳,严军,郭红想,王勇. 基于时空注意力机制的轻量级脑纹识别算法[J]. 浙江大学学报(工学版), 2026, 60(3): 633-642.
Fang FANG,Jun YAN,Hongxiang GUO,Yong WANG. Lightweight brainprint recognition algorithm based on spatio-temporal attention mechanism. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 633-642.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.019
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/633
|
| 1 |
ZHANG S, SUN L, MAO X, et al Review on EEG-based authentication technology[J]. Computational Intelligence and Neuroscience, 2021, 2021 (1): 5229576
doi: 10.1155/2021/5229576
|
| 2 |
陈彬滨, 吴涛, 陈黎飞 基于缩放卷积注意力网络的跨多个体脑电情绪识别[J]. 中国生物医学工程学报, 2024, 43 (5): 550- 560 CHEN Binbin, WU Tao, CHEN Lifei Cross-subjects EEG emotion recognition based on scaled convolutional attention network[J]. Chinese Journal of Biomedical Engineering, 2024, 43 (5): 550- 560
|
| 3 |
刘国文, 唐佳佳, 金宣妤, 等 基于多尺度卷积和身份子空间的脑纹识别[J]. 杭州电子科技大学学报: 自然科学版, 2025, 45 (1): 82- 88 LIU Guowen, TANG Jiajia, JIN Xuanyu, et al Brainprint recognition based on multi-scale convolution and subspace[J]. Journal of Hangzhou Dianzi University: Natural Sciences, 2025, 45 (1): 82- 88
|
| 4 |
PALANIAPPAN R, MANDIC D P Biometrics from brain electrical activity: a machine learning approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (4): 738- 742
doi: 10.1109/TPAMI.2007.1013
|
| 5 |
FALLANI F D V, VECCHIATO G, TOPPI J, et al. Subject identification through standard EEG signals during resting states [C]//Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: IEEE, 2011: 2331–2333.
|
| 6 |
ALBASRI A, ABDALI-MOHAMMADI F, FATHI A EEG electrode selection for person identification thru a genetic-algorithm method[J]. Journal of Medical Systems, 2019, 43 (9): 297
doi: 10.1007/s10916-019-1364-8
|
| 7 |
YANG S, DERAVI F On the usability of electroencephalographic signals for biometric recognition: a survey[J]. IEEE Transactions on Human-Machine Systems, 2017, 47 (6): 958- 969
doi: 10.1109/THMS.2017.2682115
|
| 8 |
SUN Y, LO F P W, LO B EEG-based user identification system using 1D-convolutional long short-term memory neural networks[J]. Expert Systems with Applications, 2019, 125: 259- 267
doi: 10.1016/j.eswa.2019.01.080
|
| 9 |
SCHONS T, MOREIRA G J P, SILVA P H L, et al. Convolutional network for EEG-based biometric [C]//Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Cham: Springer, 2018: 601–608.
|
| 10 |
WANG M, EL-FIQI H, HU J, et al Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states[J]. IEEE Transactions on Information Forensics and Security, 2019, 14 (12): 3259- 3272
doi: 10.1109/TIFS.2019.2916403
|
| 11 |
FRASCHINI M, HILLEBRAND A, DEMURU M, et al An EEG-based biometric system using eigenvector centrality in resting state brain networks[J]. IEEE Signal Processing Letters, 2015, 22 (6): 666- 670
doi: 10.1109/LSP.2014.2367091
|
| 12 |
KUMAR G P, DUTTA U, SHARMA K, et al. EEG-based biometrics: phase-locking value from gamma band performs well across heterogeneous datasets [C]//Proceedings of the International Conference of the Biometrics Special Interest Group. Darmstadt: IEEE, 2022: 1–6.
|
| 13 |
TIAN W, LI M, JU X, et al Applying multiple functional connectivity features in GCN for EEG-based human identification[J]. Brain Sciences, 2022, 12 (8): 1072
doi: 10.3390/brainsci12081072
|
| 14 |
MYUNG K, GU K, BUM P. Spectrogram and CNN based personal identification using EEG signal [C]//Proceedings of the IEEE International Conference on Consumer Electronics-Asia. Gangwon: IEEE, 2021: 1–4.
|
| 15 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708–13717.
|
| 16 |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
|
| 17 |
LI H, LI J, WEI H, et al Slim-neck by GSConv: a lightweight-design for real-time detector architectures[J]. Journal of Real-Time Image Processing, 2024, 21 (3): 62
doi: 10.1007/s11554-024-01436-6
|
| 18 |
GARNOT V S F, LANDRIEU L, GIORDANO S, et al. Satellite image time series classification with pixel-set encoders and temporal self-attention [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12322–12331.
|
| 19 |
GOLDBERGER A L, AMARAL L A, GLASS L, et al PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101 (23): E215- E220
|
| 20 |
KOELSTRA S, MUHL C, SOLEYMANI M, et al DEAP: a database for emotion Analysis;Using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3 (1): 18- 31
doi: 10.1109/T-AFFC.2011.15
|
| 21 |
ASHENAEI R, ASGHAR B A, YOUSEFI R T Stable EEG-based biometric system using functional connectivity based on time-frequency features with optimal channels[J]. Biomedical Signal Processing and Control, 2022, 77: 103790
doi: 10.1016/j.bspc.2022.103790
|
| 22 |
ZHOU M, FANG Y, XIAO Z. Personal identification with exploiting competitive tasks in EEG signals [C]//Biometric Recognition. Cham: Springer, 2021: 11–19.
|
| 23 |
ALYASSERI Z A A, AHMAD ALOMARI O, MAKHADMEH S N, et al EEG channel selection for person identification using binary grey wolf optimizer[J]. IEEE Access, 2022, 10: 10500- 10513
doi: 10.1109/ACCESS.2021.3135805
|
| 24 |
JIN R, WANG Y, BAI R, et al. EPI-CGAN: robust EEG-based person identification using conditional generative adversarial network [C]//Proceedings of the IEEE International Joint Conference on Biometrics. Abu Dhabi: IEEE, 2023: 1–9.
|
| 25 |
ORTEGA-RODRÍGUEZ J, GÓMEZ-GONZÁLEZ J F, PEREDA E Selection of the minimum number of EEG sensors to guarantee biometric identification of individuals[J]. Sensors, 2023, 23 (9): 4239
doi: 10.3390/s23094239
|
| 26 |
AKBARNIA Y, DALIRI M R EEG-based identification system using deep neural networks with frequency features[J]. Heliyon, 2024, 10 (4): e25999
doi: 10.1016/j.heliyon.2024.e25999
|
| 27 |
ALSHEHRI L, HUSSAIN M A lightweight GCT-EEGNet for EEG-based individual recognition under diverse brain conditions[J]. Mathematics, 2024, 12 (20): 3286
doi: 10.3390/math12203286
|
| 28 |
LI D, ZENG Z, HUANG N, et al Brain topographic map: a visual feature for multi-view fusion design in EEG-based biometrics[J]. Digital Signal Processing, 2025, 164: 105251
doi: 10.1016/j.dsp.2025.105251
|
| 29 |
DAS B B, KUMAR P, KAR D, et al A spatio-temporal model for EEG-based person identification[J]. Multimedia Tools and Applications, 2019, 78 (19): 28157- 28177
doi: 10.1007/s11042-019-07905-6
|
| 30 |
ALYASSERI Z A A, AL-BETAR M A, AWADALLAH M A, et al. EEG feature fusion for person identification using efficient machine learning approach [C]//Proceedings of the Palestinian International Conference on Information and Communication Technology. Gaza: IEEE, 2021: 97–102.
|
| 31 |
KAUR B, SINGH D. Neuro signals: a future biomertic approach towards user identification [C]//Proceedings of the 7th International Conference on Cloud Computing, Data Science and Engineering - Confluence. Noida: IEEE, 2017: 112–117.
|
| 32 |
YAHYAEI R, ESAT ÖZKURT T Mean curve length: an efficient feature for brainwave biometrics[J]. Biomedical Signal Processing and Control, 2022, 76: 103664
doi: 10.1016/j.bspc.2022.103664
|
| 33 |
LI D, ZENG Z, WANG Z, et al ESTformer: transformer utilising spatiotemporal dependencies for electroencephalogram super-resolution[J]. Knowledge-Based Systems, 2025, 317: 113345
doi: 10.1016/j.knosys.2025.113345
|
| 34 |
BANDANA D B, KUMAR R S, SATHYA B K, et al Person identification using autoencoder-CNN approach with multitask-based EEG biometric[J]. Multimedia Tools and Applications, 2024, 83 (35): 83205- 83225
doi: 10.1007/s11042-024-18693-z
|
| 35 |
WILAIPRASITPORN T, DITTHAPRON A, MATCHAPARN K, et al Affective EEG-based person identification using the deep learning approach[J]. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12 (3): 486- 496
doi: 10.1109/TCDS.2019.2924648
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|