| 计算机技术、控制工程 |
|
|
|
|
| 自动驾驶综合仿真平台的现状与展望 |
吕君陶1( ),祁珏瑜1,于淏辰1,马雷2,马惠敏1,胡天宇1,*( ) |
1. 北京科技大学 计算机与通信工程学院,北京 100083 2. 北京大学 未来技术学院,北京 100080 |
|
| Current status and future prospect of integrated simulation platform for autonomous driving |
Juntao LV1( ),Jueyu QI1,Haochen YU1,Lei MA2,Huimin MA1,Tianyu HU1,*( ) |
1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China 2. College of Future Technology, Peking University, Beijing 100080, China |
引用本文:
吕君陶,祁珏瑜,于淏辰,马雷,马惠敏,胡天宇. 自动驾驶综合仿真平台的现状与展望[J]. 浙江大学学报(工学版), 2026, 60(3): 513-526.
Juntao LV,Jueyu QI,Haochen YU,Lei MA,Huimin MA,Tianyu HU. Current status and future prospect of integrated simulation platform for autonomous driving. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 513-526.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.007
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/513
|
| 1 |
HO J, JAIN A, ABBEEL P Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840- 6851
|
| 2 |
SONG Y, ERMON S. Generative modeling by estimating gradients of the data distribution [EB/OL]. (2020-10-10)[2025-04-30]. https://arxiv.org/abs/1907.05600.
|
| 3 |
SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations [EB/OL]. (2021-02-10)[2025-04-30]. https://arxiv.org/abs/2011.13456.
|
| 4 |
DONG R, HAN C, PENG Y, et al. DreamLLM: synergistic multimodal comprehension and creation [EB/OL]. (2024-03-15)[2025-04-30]. https://arxiv.org/abs/2309.11499.
|
| 5 |
PANAGOPOULOU A, XUE L, YU N, et al. X-InstructBLIP: a framework for aligning X-modal instruction-aware representations to LLMs and emergent cross-modal reasoning [EB/OL]. (2024-09-09)[2025-04-30]. https://arxiv.org/abs/2311.18799.
|
| 6 |
ZHAO W X, ZHOU K, LI J, et al. A survey of large language models [EB/OL]. (2025-03-11)[2025-04-30]. https://arxiv.org/abs/2303.18223.
|
| 7 |
FENG T, WANG W, YANG Y. A survey of world models for autonomous driving [EB/OL]. (2025-02-16) [2025-04-30]. https://arxiv.org/abs/2501.11260.
|
| 8 |
FENG T, WANG W, YANG Y. A survey on visual traffic simulation: Models, evaluations, and applications in autonomous driving [J]. Computer Graphics Forum, 2020, 39(1): 287-308.
|
| 9 |
SARKER S, MAPLES B, ISLAM I, et al. A comprehensive review on traffic datasets and simulators for autonomous vehicles [EB/OL]. (2025-04-14)[2025-04-30]. https://arxiv.org/abs/2412.14207.
|
| 10 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. (2022-12-10)[2025-04-30]. https://arxiv.org/abs/1312.6114
|
| 11 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial networks[J]. Communications of the ACM, 2020, 63 (11): 139- 144
doi: 10.1145/3422622
|
| 12 |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. (2016-01-07) [2025-04-30]. https://arxiv.org/abs/1511.06434.
|
| 13 |
KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 4396–4405.
|
| 14 |
RAMESH A, PAVLOV M, GOH G, et al. Zero-shot text-to-image generation [C]//International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 8821-8831.
|
| 15 |
POOLE B, JAIN A, BARRON J T, et al. DreamFusion: text-to-3D using 2D diffusion [EB/OL]. (2022-09-29) [2025-04-30]. https://arxiv.org/abs/2209.14988.
|
| 16 |
LIN C H, GAO J, TANG L, et al. Magic3D: high-resolution text-to-3D content creation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 300–309.
|
| 17 |
ZHANG L, RAO A, AGRAWALA M. Adding conditional control to text-to-image diffusion models [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2024: 3813–3824.
|
| 18 |
LIU Y, ZHANG K, LI Y, et al. Sora: a review on background, technology, limitations, and opportunities of large vision models [EB/OL]. (2024-04-17) [2025-04-30]. https://arxiv.org/abs/2402.17177.
|
| 19 |
WANG X, MALEKI M A, AZHAR M W, et al. Moving forward: a review of autonomous driving software and hardware systems [EB/OL]. (2024-11-15) [2025-04-30]. https://arxiv.org/abs/2411.10291.
|
| 20 |
CHU Y J R, WEI T H, HUANG J B, et al. Sim-to-real transfer for miniature autonomous car racing [EB/OL]. (2020-11-11)[2025-04-30]. https://arxiv.org/abs/2011.05617.
|
| 21 |
ZHANG C, LIU Y, ZHAO D, et al. RoadView: a traffic scene simulator for autonomous vehicle simulation testing [C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Qingdao: IEEE, 2014: 1160–1165.
|
| 22 |
TAN S, WONG K, WANG S, et al. SceneGen: learning to generate realistic traffic scenes [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 892–901.
|
| 23 |
WEI Y, WANG Z, LU Y, et al. Editable scene simulation for autonomous driving via collaborative LLM-agents [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 15077–15087.
|
| 24 |
HU A, RUSSELL L, YEO H, et al. Gaia-1: a generative world model for autonomous driving [EB/OL]. (2023-09-29)[2025-04-30]. https://arxiv.org/abs/2309.17080.
|
| 25 |
ZHAO G, NI C, WANG X, et al. DriveDreamer4D: world models are effective data machines for 4D driving scene representation [C]// Proceedings of the Computer Vision and Pattern Recognition Conference. Los Angeles: IEEE, 2025: 12015-12026.
|
| 26 |
SUN S, GU Z, SUN T, et al DriveSceneGen: generating diverse and realistic driving scenarios from scratch[J]. IEEE Robotics and Automation Letters, 2024, 9 (8): 7007- 7014
doi: 10.1109/LRA.2024.3416792
|
| 27 |
PRONOVOST E, GANESINA M R, HENDY N, et al Scenario diffusion: controllable driving scenario generation with diffusion[J]. Advances in Neural Information Processing Systems, 2023, 36: 68873- 68894
|
| 28 |
LI X, ZHANG Y, YE X. DrivingDiffusion: layout-guided multi-view driving scenarios video generation with latent diffusion model [C]// European Conference on Computer Vision. Cham: Springer, 2024: 469-485.
|
| 29 |
MÜLLER N, SIMONELLI A, PORZI L, et al. AutoRF: learning 3D object radiance fields from single view observations [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 3961–3970.
|
| 30 |
KERBL B, KOPANAS G, LEIMKUEHLER T, et al 3D Gaussian splatting for real-time radiance field rendering[J]. ACM Transactions on Graphics, 2023, 42 (4): 1- 14
|
| 31 |
YAN Y, LIN H, ZHOU C, et al. Street Gaussians: modeling dynamic urban scenes with Gaussian splatting [C]//European Conference on Computer Vision. Milan: Springer, 2024: 156-173.
|
| 32 |
ZHOU X, LIN Z, SHAN X, et al. DrivingGaussian: composite Gaussian splatting for surrounding dynamic autonomous driving scenes [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 21634-21643.
|
| 33 |
KHAN M, FAZLALI H, SHARMA D, et al. AutoSplat: constrained Gaussian splatting for autonomous driving scene reconstruction [C]//2025 IEEE International Conference on Robotics and Automation. Atlanta: IEEE, 2025: 8315-8321.
|
| 34 |
HILLAIRE S. A scalable and production ready sky and atmosphere rendering technique [J]. Computer Graphics Forum, 2020, 39(4): 13-22.
|
| 35 |
ZYRIANOV V, CHE H, LIU Z, et al. LidarDM: generative LiDAR simulation in a generated world [C]//2025 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2025: 6055-6062.
|
| 36 |
LI Y, LIN Z H, FORSYTH D, et al. Climatenerf: extreme weather synthesis in neural radiance field [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 3227-3238.
|
| 37 |
MÜLLER T, EVANS A, SCHIED C, et al Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41 (4): 1- 15
|
| 38 |
DAI Q, NI X, SHEN Q, et al. RainyGS: efficient rain synthesis with physically-based Gaussian splatting [C]//Proceedings of the Computer Vision and Pattern Recognition Conference. Los Angeles: IEEE, 2025: 16153-16162.
|
| 39 |
XIE Y, ZHANG M, HAO Q. ClimateGS: real-time climate simulation with 3D Gaussian style transfer [EB/OL]. (2025-03-19)[2025-04-30]. https://arxiv.org/abs/2503.14845.
|
| 40 |
BENEKOHAL R F, TREITERER J CARSIM: car-following model for simulation of traffic in normal and stop-and-go conditions[J]. Transportation Research Record, 1988, 1194: 99- 111
|
| 41 |
NVIDIA Corporation. Sensor simulation [EB/OL]. (2025-05-02) [2025-05-02]. https://www.nvidia.cn/ glossary/sensor-simulation.
|
| 42 |
CABON Y, MURRAY N, HUMENBERGER M. Virtual KITTI 2 [EB/OL]. (2020-01-29)[2025-04-30]. https:// arxiv.org /abs/2001.10773.
|
| 43 |
GEIGER A, LENZ P, STILLER C, et al Vision meets robotics: the kitti dataset[J]. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237
doi: 10.1177/0278364913491297
|
| 44 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11618-11628.
|
| 45 |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2443–2451.
|
| 46 |
IŞLER H. Comparison of electric (EV) and fossil fuel (gasoline-diesel) vehicles in terms of torque and power [EB/OL]. (2023-05-31) [2025-05-02]. https://www.researchgate.net/publication/370553199.
|
| 47 |
SURESHKUMAR P, RAJASEKAR C, DEEPA R, et al Modeling and simulation of electric vehicle drive with evaluating forces[J]. Journal of Data Acquisition and Processing, 2024, 39 (1): 759- 769
|
| 48 |
PREVIATI G, MASTINU G, GOBBI M Mass, centre of gravity location and inertia tensor of electric vehicles: measured data for accurate accident reconstruction[J]. World Electric Vehicle Journal, 2024, 15 (6): 266
doi: 10.3390/wevj15060266
|
| 49 |
JHA S, TSAI T, HARI S, et al. Kayotee: a fault injection-based system to assess the safety and reliability of autonomous vehicles to faults and errors [EB/OL]. (2019-07-01)[2025-04-30]. https://arxiv.org/abs/1907.01024.
|
| 50 |
JHA S, BANERJEE S S, CYRIAC J, et al. AVFI: fault injection for autonomous vehicles [C]//Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops. Luxembourg: IEEE, 2018: 55–56.
|
| 51 |
AMYAN A, ABBOUSH M, KNIEKE C, et al Automating fault test cases generation and execution for automotive safety validation via NLP and HIL simulation[J]. Sensors, 2024, 24 (10): 3145
doi: 10.3390/s24103145
|
| 52 |
QUIGLEY M, CONLEY K, GERKEY B, et al. ROS: an open-source robot operating system [C]//Open-Source Software Workshop of the International Conference on Robotics and Automation. Kobe: IEEE, 2009: 5-6.
|
| 53 |
RONG G, SHIN B H, TABATABAEE H, et al. LGSVL simulator: a high fidelity simulator for autonomous driving [C]//Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes: IEEE, 2020: 1–6.
|
| 54 |
DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: an open urban driving simulator [C] // Proceedings of the Conference on Robot Learning. Sydney: PMLR, 2017: 1-16.
|
| 55 |
Synkrotron. Carla_Apollo_Bridge [EB/OL]. (2024-09-09)[2025-05-02]. https://github.com/guardstrikelab/carla_apollo_bridge.
|
| 56 |
XU X, LIU K, DAI P, et al. Enabling digital twin in vehicular edge computing: a multi-agent multi-objective deep reinforcement learning solution [EB/OL]. (2023-01-27)[2025-04-30]. https://arxiv.org/abs/2210.17386v1.
|
| 57 |
GRIGORESCU S, COCIAS T, TRASNEA B, et al Cloud2edge elastic AI framework for prototyping and deployment of AI inference engines in autonomous vehicles[J]. Sensors, 2020, 20 (19): 5450
doi: 10.3390/s20195450
|
| 58 |
YANG X, WEN L, MA Y, et al. DriveArena: a closed-loop generative simulation platform for autonomous driving [EB/OL]. (2024-08-01)[2025-04-30]. https://arxiv.org/abs/2408.00415.
|
| 59 |
HUANG Z, SHENG Z, WAN Z, et al. Sky-drive: a distributed multi-agent simulation platform for human-AI collaborative and socially-aware future transportation [EB/OL]. (2025-04-25)[2025-04-30]. https://arxiv.org/abs/2504.18010.
|
| 60 |
Alphadrive. AlphaDrive cloud simulation platform [EB/OL]. (2025-05-02)[2025-05-02]. https://alphadrive.ai.
|
| 61 |
Unreal Engine. Unreal engine 5 [EB/OL]. (2022-04-05) [2025-04-30]. https://www.unrealengine.com/en-US/what-is-unreal-engine-4, 2018.
|
| 62 |
HUSSAIN A, SHAKEEL H, HUSSAIN F, et al Unity game development engine: a technical survey[J]. University of Sindh Journal of Information and Communication Technology, 2020, 4 (2): 73- 81
|
| 63 |
JUNG H Y, PAEK D H, KONG S H. Open-source autonomous driving software platforms: comparison of autoware and Apollo [EB/OL]. (2025-01-31) [2025-04-30]. https://arxiv.org/abs/2501.18942.
|
| 64 |
EREZ T, TASSA Y, TODOROV E. Simulation tools for model-based robotics: comparison of bullet, havok, MuJoCo, ODE and PhysX [C]//Proceedings of the IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 4397–4404.
|
| 65 |
GOSLIN M, MINE M R The Panda3D graphics engine[J]. Computer, 2004, 37 (10): 112- 114
|
| 66 |
RAO V, JAIN N, RANA P, et al. Game development using Panda 3D game engine [J]. International Journal on Recent and Innovation Trends in Computing and Communication, 3(2): 534-536.
|
| 67 |
HENRICH V, REUTER T. CarDriver: using Python and Panda3D to construct a virtual environment for teaching driving [EB/OL]. (2008-12-31) [2025-04-30]. https://api.semanticscholar.org/CorpusID:109635468.
|
| 68 |
SHAH S, DEY D, LOVETT C, et al. Airsim: high-fidelity visual and physical simulation for autonomous vehicles [C] // Conference on Field and Service Robotics. Zurich: Springer, 2017: 621-635.
|
| 69 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
| 70 |
WU D, LIAO M W, ZHANG W T, et al Yolop: you only look once for panoptic driving perception[J]. Machine Intelligence Research, 2022, 19 (6): 550- 562
doi: 10.1007/s11633-022-1339-y
|
| 71 |
SARDA A, DIXIT S, BHAN A. Object detection for autonomous driving using YOLO [you only look once] algorithm [C]//Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks. Tirunelveli: IEEE, 2021: 1370–1374.
|
| 72 |
CAO Y, LI C, PENG Y, et al MCS-YOLO: a multiscale object detection method for autonomous driving road environment recognition[J]. IEEE Access, 2023, 11: 22342- 22354
doi: 10.1109/ACCESS.2023.3252021
|
| 73 |
WEI Y, ZHAO L, ZHENG W, et al. Surroundocc: multi-camera 3d occupancy prediction for autonomous driving [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 21729-21740.
|
| 74 |
TIAN X, JIANG T, YUN L, et al Occ3D: a large-scale 3D occupancy prediction benchmark for autonomous driving[J]. Advances in Neural Information Processing Systems, 2023, 36: 64318- 64330
|
| 75 |
ZHENG W, CHEN W, HUANG Y, et al. Occworld: learning a 3d occupancy world model for autonomous driving [C]//European Conference on Computer Vision. Milan: Springer, 2024: 55-72.
|
| 76 |
ACUNA D, PHILION J, FIDLER S Towards optimal strategies for training self-driving perception models in simulation[J]. Advances in Neural Information Processing Systems, 2021, 34: 1686- 1699
|
| 77 |
CAO M, RAMEZANI R Data generation using simulation technology to improve perception mechanism of autonomous vehicles[J]. Journal of Physics: Conference Series, 2023, 2547 (1): 012006
|
| 78 |
YANG Z, CHEN Y, WANG J, et al. Unisim: a neural closed-loop sensor simulator [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 1389- 1399.
|
| 79 |
MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis [C]//European Conference on Computer Vision. [S. l. ]: Springer, 2020: 405-421.
|
| 80 |
WU Z, LIU T, LUO L, et al. Mars: an instance-aware, modular and realistic simulator for autonomous driving [C]// International Conference on Artificial Intelligence. Singapore: Springer, 2023: 3-15.
|
| 81 |
YANG J, IVANOVIC B, LITANY O, et al. EmerNeRF: emergent spatial-temporal scene decomposition via self-supervision [EB/OL]. (2023-11-03)[2025-04-30]. https://arxiv.org/abs/2311.02077.
|
| 82 |
ZHAO W, QUERALTA J P, WESTERLUND T. Sim-to-real transfer in deep reinforcement learning for robotics: a survey [C]//2020 IEEE Symposium Series on Computational Intelligence. Canberra: IEEE, 2020: 737-744.
|
| 83 |
DAZA I G, IZQUIERDO R, MARTÍNEZ L M, et al Sim-to-real transfer and reality gap modeling in model predictive control for autonomous driving[J]. Applied Intelligence, 2023, 53 (10): 12719- 12735
doi: 10.1007/s10489-022-04148-1
|
| 84 |
HU X, LI S, HUANG T, et al How simulation helps autonomous driving: a survey of Sim2real, digital twins, and parallel intelligence[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9 (1): 593- 612
doi: 10.1109/TIV.2023.3312777
|
| 85 |
AKHAURI S, ZHENG L, LIN M C. Enhanced transfer learning for autonomous driving with systematic accident simulation [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 5986–5993.
|
| 86 |
AKHAURI S, ZHENG L, GOLDSTEIN T, et al. Improving generalization of transfer learning across domains using spatio-temporal features in autonomous driving [EB/OL]. (2021-09-23)[2025-04-30]. https://arxiv.org/abs/2103.08116.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|