Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 513-526    DOI: 10.3785/j.issn.1008-973X.2026.03.007
计算机技术、控制工程     
自动驾驶综合仿真平台的现状与展望
吕君陶1(),祁珏瑜1,于淏辰1,马雷2,马惠敏1,胡天宇1,*()
1. 北京科技大学 计算机与通信工程学院,北京 100083
2. 北京大学 未来技术学院,北京 100080
Current status and future prospect of integrated simulation platform for autonomous driving
Juntao LV1(),Jueyu QI1,Haochen YU1,Lei MA2,Huimin MA1,Tianyu HU1,*()
1. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. College of Future Technology, Peking University, Beijing 100080, China
 全文: PDF(3261 KB)   HTML
摘要:

自动驾驶仿真平台在自动驾驶系统的研发、测试与验证过程中发挥着至关重要的作用. 系统综述了当前主流自动驾驶仿真平台的分类与关键技术路径, 包括环境建模、传感器模拟、车辆动力学建模、感知算法测试、V2X通信、云仿真等方面, 重点分析合成数据生成、低成本算法训练、跨域迁移能力、平台可扩展性等核心挑战与研究进展, 分析具体的基于计算机视觉和人工智能的自动驾驶仿真技术,展望了该技术的发展趋势. 随着生成式AI、神经渲染、多模态学习等新兴技术的发展, 仿真平台正向高真实感、可交互、闭环式验证方向演进, 逐步形成数据生成、算法训练、性能评估的全流程闭环. 未来, 仿真平台将在提升自动驾驶系统的泛化能力、加速产品部署进程以及构建标准化测试验证体系等方面持续发挥支撑作用.

关键词: 自动驾驶计算机视觉算法测试数据生成    
Abstract:

Autonomous driving simulation platforms play a vital role in the development, testing and validation of autonomous driving systems. A systematic review of the classification and key technical pathways of mainstream simulation platforms was presented, covering aspects such as environment modeling, sensor simulation, vehicle dynamics modeling, perception algorithm evaluation, V2X communication and cloud-based simulation. Core challenges and research progress related to synthetic data generation, cost-effective algorithm training, cross-domain generalization and platform scalability were analyzed, emphasizing simulation technologies based on computer vision and artificial intelligence. Future development trends were discussed. Simulation platforms are evolving toward higher realism, interactivity and closed-loop validation with the advancement of emerging technologies such as generative AI, neural rendering and multimodal learning, gradually forming a comprehensive pipeline that integrates data generation, algorithm training and performance evaluation. Simulation platforms will continue to play an essential role in enhancing the generalization capability of autonomous driving system, accelerating product deployment, and establishing standard testing and validation framework in the future.

Key words: autonomous driving    computer vision    algorithm testing    data generation
收稿日期: 2025-07-14 出版日期: 2026-02-04
:  TP 393  
基金资助: 国家自然科学基金资助项目(62172036); 科技创新2030-“新一代人工智能”重大资助项目(2022ZD0116305).
通讯作者: 胡天宇     E-mail: 17721026029@163.com;tianyu@ustb.edu.cn
作者简介: 吕君陶(2002—),男,硕士生,从事计算机视觉和大语言模型的研究. orcid.org/0009-0006-3374-047X.E-mail:17721026029@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吕君陶
祁珏瑜
于淏辰
马雷
马惠敏
胡天宇

引用本文:

吕君陶,祁珏瑜,于淏辰,马雷,马惠敏,胡天宇. 自动驾驶综合仿真平台的现状与展望[J]. 浙江大学学报(工学版), 2026, 60(3): 513-526.

Juntao LV,Jueyu QI,Haochen YU,Lei MA,Huimin MA,Tianyu HU. Current status and future prospect of integrated simulation platform for autonomous driving. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 513-526.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.007        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/513

图 1  生成模型及AIGC的发展历程
图 2  仿真平台与ADS任务中各组件的关系
图 3  自动驾驶仿真平台的基本流程
图 4  Carla-Apollo Bridge软件界面[55]
图 5  现有自动驾驶仿真平台与技术之间的关系
平台开源状况建模技术接口特点
CarSim闭源VehicleSim SolversMATLAB, Simulink, Python, C++支持多种车型的建模, 扩展性和兼容性强, 于1996年发布
Carmaker闭源UnigineMATLAB, Simulink, Python, C++支持 27自由度多体动力学模型及多种极端情况模拟, 于1999年发布, 目前已更新至14.0
Prescan闭源Unreal EngineMATLAB, Simulink支持与多方第三款软件集成, 精准呈现驾驶员的操控, 2002年由TASS发布, 后被Siemens收购, 持续更新中
VI-Grade闭源Unreal EngineMATLAB, Simulink提供从静态桌面解决方案到全尺寸动态模拟器的多种配置, 支持模块化组装和快速原型开发, 发布于2005年, 近期推出了云功能
CARLA开源Unreal EngineROS, Python, ApolloClient-Server架构, 支持多种传感器仿真, 发布于2017年, 持续更新中
Airsim开源Unreal Engine
/Unity
Python, C++, ROS, Simulink, Apollo能实时处理深度、实例分割, 支持软件在环仿真, 适用于多个下游任务, 发布于2017年, 但已停止更新
DeepDrive开源Unreal EngineROS, Python环境交互灵活, 集成深度学习框架, 发布于2018年, 已停止更新
TAD Sim开源Unreal EngineROS, Python高真实度场景仿真, 高精度车辆动力学模型, 高效的测试工具, 支持云仿真, 发布于2018年
Panosim闭源UnityMATLAB, Simulink高精度建模, 一体化仿真工具链, 2019年发布正式版本5.0
LGSVL开源UnityROS, Apollo, Autoware, Python, C++支持多种传感器仿真、多种高精度地图格式、V2X通信仿真, 发布于2019年, 2022年已停止更新
MetaDrive开源Panda3DPython轻量化, 提供精确的物理模拟, 支持多种传感器仿真, 2021年发布
DriveSim闭源OmniverseROS, Python, C++结合RTX技术和可微渲染, 支持多种传感器仿真, 发布于2021年
SimOne闭源SimOne-
Bus/Car/Truck
ROS, Simulink, Python, C++全链闭环仿真, 支持多种常用数据接口, 发布于2021年
表 1  现有自动驾驶仿真平台的比较
图 6  AirSim的仿真界面
图 7  Carla仿真平台的用户界面
图 8  LGSVL的控制界面
图 9  Prescan场景仿真
图 10  SimOne自动驾驶仿真平台UI
图 11  用于训练感知算法的DriveSim
1 HO J, JAIN A, ABBEEL P Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840- 6851
2 SONG Y, ERMON S. Generative modeling by estimating gradients of the data distribution [EB/OL]. (2020-10-10)[2025-04-30]. https://arxiv.org/abs/1907.05600.
3 SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations [EB/OL]. (2021-02-10)[2025-04-30]. https://arxiv.org/abs/2011.13456.
4 DONG R, HAN C, PENG Y, et al. DreamLLM: synergistic multimodal comprehension and creation [EB/OL]. (2024-03-15)[2025-04-30]. https://arxiv.org/abs/2309.11499.
5 PANAGOPOULOU A, XUE L, YU N, et al. X-InstructBLIP: a framework for aligning X-modal instruction-aware representations to LLMs and emergent cross-modal reasoning [EB/OL]. (2024-09-09)[2025-04-30]. https://arxiv.org/abs/2311.18799.
6 ZHAO W X, ZHOU K, LI J, et al. A survey of large language models [EB/OL]. (2025-03-11)[2025-04-30]. https://arxiv.org/abs/2303.18223.
7 FENG T, WANG W, YANG Y. A survey of world models for autonomous driving [EB/OL]. (2025-02-16) [2025-04-30]. https://arxiv.org/abs/2501.11260.
8 FENG T, WANG W, YANG Y. A survey on visual traffic simulation: Models, evaluations, and applications in autonomous driving [J]. Computer Graphics Forum, 2020, 39(1): 287-308.
9 SARKER S, MAPLES B, ISLAM I, et al. A comprehensive review on traffic datasets and simulators for autonomous vehicles [EB/OL]. (2025-04-14)[2025-04-30]. https://arxiv.org/abs/2412.14207.
10 KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. (2022-12-10)[2025-04-30]. https://arxiv.org/abs/1312.6114
11 GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial networks[J]. Communications of the ACM, 2020, 63 (11): 139- 144
doi: 10.1145/3422622
12 RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. (2016-01-07) [2025-04-30]. https://arxiv.org/abs/1511.06434.
13 KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 4396–4405.
14 RAMESH A, PAVLOV M, GOH G, et al. Zero-shot text-to-image generation [C]//International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 8821-8831.
15 POOLE B, JAIN A, BARRON J T, et al. DreamFusion: text-to-3D using 2D diffusion [EB/OL]. (2022-09-29) [2025-04-30]. https://arxiv.org/abs/2209.14988.
16 LIN C H, GAO J, TANG L, et al. Magic3D: high-resolution text-to-3D content creation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 300–309.
17 ZHANG L, RAO A, AGRAWALA M. Adding conditional control to text-to-image diffusion models [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2024: 3813–3824.
18 LIU Y, ZHANG K, LI Y, et al. Sora: a review on background, technology, limitations, and opportunities of large vision models [EB/OL]. (2024-04-17) [2025-04-30]. https://arxiv.org/abs/2402.17177.
19 WANG X, MALEKI M A, AZHAR M W, et al. Moving forward: a review of autonomous driving software and hardware systems [EB/OL]. (2024-11-15) [2025-04-30]. https://arxiv.org/abs/2411.10291.
20 CHU Y J R, WEI T H, HUANG J B, et al. Sim-to-real transfer for miniature autonomous car racing [EB/OL]. (2020-11-11)[2025-04-30]. https://arxiv.org/abs/2011.05617.
21 ZHANG C, LIU Y, ZHAO D, et al. RoadView: a traffic scene simulator for autonomous vehicle simulation testing [C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Qingdao: IEEE, 2014: 1160–1165.
22 TAN S, WONG K, WANG S, et al. SceneGen: learning to generate realistic traffic scenes [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 892–901.
23 WEI Y, WANG Z, LU Y, et al. Editable scene simulation for autonomous driving via collaborative LLM-agents [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 15077–15087.
24 HU A, RUSSELL L, YEO H, et al. Gaia-1: a generative world model for autonomous driving [EB/OL]. (2023-09-29)[2025-04-30]. https://arxiv.org/abs/2309.17080.
25 ZHAO G, NI C, WANG X, et al. DriveDreamer4D: world models are effective data machines for 4D driving scene representation [C]// Proceedings of the Computer Vision and Pattern Recognition Conference. Los Angeles: IEEE, 2025: 12015-12026.
26 SUN S, GU Z, SUN T, et al DriveSceneGen: generating diverse and realistic driving scenarios from scratch[J]. IEEE Robotics and Automation Letters, 2024, 9 (8): 7007- 7014
doi: 10.1109/LRA.2024.3416792
27 PRONOVOST E, GANESINA M R, HENDY N, et al Scenario diffusion: controllable driving scenario generation with diffusion[J]. Advances in Neural Information Processing Systems, 2023, 36: 68873- 68894
28 LI X, ZHANG Y, YE X. DrivingDiffusion: layout-guided multi-view driving scenarios video generation with latent diffusion model [C]// European Conference on Computer Vision. Cham: Springer, 2024: 469-485.
29 MÜLLER N, SIMONELLI A, PORZI L, et al. AutoRF: learning 3D object radiance fields from single view observations [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 3961–3970.
30 KERBL B, KOPANAS G, LEIMKUEHLER T, et al 3D Gaussian splatting for real-time radiance field rendering[J]. ACM Transactions on Graphics, 2023, 42 (4): 1- 14
31 YAN Y, LIN H, ZHOU C, et al. Street Gaussians: modeling dynamic urban scenes with Gaussian splatting [C]//European Conference on Computer Vision. Milan: Springer, 2024: 156-173.
32 ZHOU X, LIN Z, SHAN X, et al. DrivingGaussian: composite Gaussian splatting for surrounding dynamic autonomous driving scenes [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 21634-21643.
33 KHAN M, FAZLALI H, SHARMA D, et al. AutoSplat: constrained Gaussian splatting for autonomous driving scene reconstruction [C]//2025 IEEE International Conference on Robotics and Automation. Atlanta: IEEE, 2025: 8315-8321.
34 HILLAIRE S. A scalable and production ready sky and atmosphere rendering technique [J]. Computer Graphics Forum, 2020, 39(4): 13-22.
35 ZYRIANOV V, CHE H, LIU Z, et al. LidarDM: generative LiDAR simulation in a generated world [C]//2025 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2025: 6055-6062.
36 LI Y, LIN Z H, FORSYTH D, et al. Climatenerf: extreme weather synthesis in neural radiance field [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 3227-3238.
37 MÜLLER T, EVANS A, SCHIED C, et al Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41 (4): 1- 15
38 DAI Q, NI X, SHEN Q, et al. RainyGS: efficient rain synthesis with physically-based Gaussian splatting [C]//Proceedings of the Computer Vision and Pattern Recognition Conference. Los Angeles: IEEE, 2025: 16153-16162.
39 XIE Y, ZHANG M, HAO Q. ClimateGS: real-time climate simulation with 3D Gaussian style transfer [EB/OL]. (2025-03-19)[2025-04-30]. https://arxiv.org/abs/2503.14845.
40 BENEKOHAL R F, TREITERER J CARSIM: car-following model for simulation of traffic in normal and stop-and-go conditions[J]. Transportation Research Record, 1988, 1194: 99- 111
41 NVIDIA Corporation. Sensor simulation [EB/OL]. (2025-05-02) [2025-05-02]. https://www.nvidia.cn/ glossary/sensor-simulation.
42 CABON Y, MURRAY N, HUMENBERGER M. Virtual KITTI 2 [EB/OL]. (2020-01-29)[2025-04-30]. https:// arxiv.org /abs/2001.10773.
43 GEIGER A, LENZ P, STILLER C, et al Vision meets robotics: the kitti dataset[J]. International Journal of Robotics Research, 2013, 32 (11): 1231- 1237
doi: 10.1177/0278364913491297
44 CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11618-11628.
45 SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2443–2451.
46 IŞLER H. Comparison of electric (EV) and fossil fuel (gasoline-diesel) vehicles in terms of torque and power [EB/OL]. (2023-05-31) [2025-05-02]. https://www.researchgate.net/publication/370553199.
47 SURESHKUMAR P, RAJASEKAR C, DEEPA R, et al Modeling and simulation of electric vehicle drive with evaluating forces[J]. Journal of Data Acquisition and Processing, 2024, 39 (1): 759- 769
48 PREVIATI G, MASTINU G, GOBBI M Mass, centre of gravity location and inertia tensor of electric vehicles: measured data for accurate accident reconstruction[J]. World Electric Vehicle Journal, 2024, 15 (6): 266
doi: 10.3390/wevj15060266
49 JHA S, TSAI T, HARI S, et al. Kayotee: a fault injection-based system to assess the safety and reliability of autonomous vehicles to faults and errors [EB/OL]. (2019-07-01)[2025-04-30]. https://arxiv.org/abs/1907.01024.
50 JHA S, BANERJEE S S, CYRIAC J, et al. AVFI: fault injection for autonomous vehicles [C]//Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops. Luxembourg: IEEE, 2018: 55–56.
51 AMYAN A, ABBOUSH M, KNIEKE C, et al Automating fault test cases generation and execution for automotive safety validation via NLP and HIL simulation[J]. Sensors, 2024, 24 (10): 3145
doi: 10.3390/s24103145
52 QUIGLEY M, CONLEY K, GERKEY B, et al. ROS: an open-source robot operating system [C]//Open-Source Software Workshop of the International Conference on Robotics and Automation. Kobe: IEEE, 2009: 5-6.
53 RONG G, SHIN B H, TABATABAEE H, et al. LGSVL simulator: a high fidelity simulator for autonomous driving [C]//Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes: IEEE, 2020: 1–6.
54 DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: an open urban driving simulator [C] // Proceedings of the Conference on Robot Learning. Sydney: PMLR, 2017: 1-16.
55 Synkrotron. Carla_Apollo_Bridge [EB/OL]. (2024-09-09)[2025-05-02]. https://github.com/guardstrikelab/carla_apollo_bridge.
56 XU X, LIU K, DAI P, et al. Enabling digital twin in vehicular edge computing: a multi-agent multi-objective deep reinforcement learning solution [EB/OL]. (2023-01-27)[2025-04-30]. https://arxiv.org/abs/2210.17386v1.
57 GRIGORESCU S, COCIAS T, TRASNEA B, et al Cloud2edge elastic AI framework for prototyping and deployment of AI inference engines in autonomous vehicles[J]. Sensors, 2020, 20 (19): 5450
doi: 10.3390/s20195450
58 YANG X, WEN L, MA Y, et al. DriveArena: a closed-loop generative simulation platform for autonomous driving [EB/OL]. (2024-08-01)[2025-04-30]. https://arxiv.org/abs/2408.00415.
59 HUANG Z, SHENG Z, WAN Z, et al. Sky-drive: a distributed multi-agent simulation platform for human-AI collaborative and socially-aware future transportation [EB/OL]. (2025-04-25)[2025-04-30]. https://arxiv.org/abs/2504.18010.
60 Alphadrive. AlphaDrive cloud simulation platform [EB/OL]. (2025-05-02)[2025-05-02]. https://alphadrive.ai.
61 Unreal Engine. Unreal engine 5 [EB/OL]. (2022-04-05) [2025-04-30]. https://www.unrealengine.com/en-US/what-is-unreal-engine-4, 2018.
62 HUSSAIN A, SHAKEEL H, HUSSAIN F, et al Unity game development engine: a technical survey[J]. University of Sindh Journal of Information and Communication Technology, 2020, 4 (2): 73- 81
63 JUNG H Y, PAEK D H, KONG S H. Open-source autonomous driving software platforms: comparison of autoware and Apollo [EB/OL]. (2025-01-31) [2025-04-30]. https://arxiv.org/abs/2501.18942.
64 EREZ T, TASSA Y, TODOROV E. Simulation tools for model-based robotics: comparison of bullet, havok, MuJoCo, ODE and PhysX [C]//Proceedings of the IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 4397–4404.
65 GOSLIN M, MINE M R The Panda3D graphics engine[J]. Computer, 2004, 37 (10): 112- 114
66 RAO V, JAIN N, RANA P, et al. Game development using Panda 3D game engine [J]. International Journal on Recent and Innovation Trends in Computing and Communication, 3(2): 534-536.
67 HENRICH V, REUTER T. CarDriver: using Python and Panda3D to construct a virtual environment for teaching driving [EB/OL]. (2008-12-31) [2025-04-30]. https://api.semanticscholar.org/CorpusID:109635468.
68 SHAH S, DEY D, LOVETT C, et al. Airsim: high-fidelity visual and physical simulation for autonomous vehicles [C] // Conference on Field and Service Robotics. Zurich: Springer, 2017: 621-635.
69 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
70 WU D, LIAO M W, ZHANG W T, et al Yolop: you only look once for panoptic driving perception[J]. Machine Intelligence Research, 2022, 19 (6): 550- 562
doi: 10.1007/s11633-022-1339-y
71 SARDA A, DIXIT S, BHAN A. Object detection for autonomous driving using YOLO [you only look once] algorithm [C]//Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks. Tirunelveli: IEEE, 2021: 1370–1374.
72 CAO Y, LI C, PENG Y, et al MCS-YOLO: a multiscale object detection method for autonomous driving road environment recognition[J]. IEEE Access, 2023, 11: 22342- 22354
doi: 10.1109/ACCESS.2023.3252021
73 WEI Y, ZHAO L, ZHENG W, et al. Surroundocc: multi-camera 3d occupancy prediction for autonomous driving [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 21729-21740.
74 TIAN X, JIANG T, YUN L, et al Occ3D: a large-scale 3D occupancy prediction benchmark for autonomous driving[J]. Advances in Neural Information Processing Systems, 2023, 36: 64318- 64330
75 ZHENG W, CHEN W, HUANG Y, et al. Occworld: learning a 3d occupancy world model for autonomous driving [C]//European Conference on Computer Vision. Milan: Springer, 2024: 55-72.
76 ACUNA D, PHILION J, FIDLER S Towards optimal strategies for training self-driving perception models in simulation[J]. Advances in Neural Information Processing Systems, 2021, 34: 1686- 1699
77 CAO M, RAMEZANI R Data generation using simulation technology to improve perception mechanism of autonomous vehicles[J]. Journal of Physics: Conference Series, 2023, 2547 (1): 012006
78 YANG Z, CHEN Y, WANG J, et al. Unisim: a neural closed-loop sensor simulator [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 1389- 1399.
79 MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis [C]//European Conference on Computer Vision. [S. l. ]: Springer, 2020: 405-421.
80 WU Z, LIU T, LUO L, et al. Mars: an instance-aware, modular and realistic simulator for autonomous driving [C]// International Conference on Artificial Intelligence. Singapore: Springer, 2023: 3-15.
81 YANG J, IVANOVIC B, LITANY O, et al. EmerNeRF: emergent spatial-temporal scene decomposition via self-supervision [EB/OL]. (2023-11-03)[2025-04-30]. https://arxiv.org/abs/2311.02077.
82 ZHAO W, QUERALTA J P, WESTERLUND T. Sim-to-real transfer in deep reinforcement learning for robotics: a survey [C]//2020 IEEE Symposium Series on Computational Intelligence. Canberra: IEEE, 2020: 737-744.
83 DAZA I G, IZQUIERDO R, MARTÍNEZ L M, et al Sim-to-real transfer and reality gap modeling in model predictive control for autonomous driving[J]. Applied Intelligence, 2023, 53 (10): 12719- 12735
doi: 10.1007/s10489-022-04148-1
84 HU X, LI S, HUANG T, et al How simulation helps autonomous driving: a survey of Sim2real, digital twins, and parallel intelligence[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9 (1): 593- 612
doi: 10.1109/TIV.2023.3312777
85 AKHAURI S, ZHENG L, LIN M C. Enhanced transfer learning for autonomous driving with systematic accident simulation [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 5986–5993.
86 AKHAURI S, ZHENG L, GOLDSTEIN T, et al. Improving generalization of transfer learning across domains using spatio-temporal features in autonomous driving [EB/OL]. (2021-09-23)[2025-04-30]. https://arxiv.org/abs/2103.08116.
[1] 陈文强,冯琳越,王东丹,顾玉磊,赵轩. 融合动态风险图与多变量注意力机制的车辆轨迹预测模型[J]. 浙江大学学报(工学版), 2026, 60(3): 455-467.
[2] 李沈崇,曾新华,林传渠. 基于轴向注意力的多任务自动驾驶环境感知算法[J]. 浙江大学学报(工学版), 2025, 59(4): 769-777.
[3] 陈文强,王东丹,朱文英,汪勇杰,王涛. 基于时空图注意力网络的车辆多模态轨迹预测模型[J]. 浙江大学学报(工学版), 2025, 59(3): 443-450.
[4] 董红召,林少轩,佘翊妮. 交通目标YOLO检测技术的研究进展[J]. 浙江大学学报(工学版), 2025, 59(2): 249-260.
[5] 宋家成,张雅楠. 跟踪性能约束下的非线性列车无模型控制[J]. 浙江大学学报(工学版), 2025, 59(11): 2309-2316.
[6] 董兆龙,黄鹤,李战一,杨澜,王会峰. 自动驾驶样本库中雪天场景融合构建方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2078-2085.
[7] 孟芸,苗鹏辉,闫茂德,左磊. 考虑乘客舒适度的混合车辆队列最优能耗控制方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2086-2095.
[8] 黎文皓,季彦婕,吴浩,贾叶雯,张水潮. 基于多智体的自动驾驶汽车停车空载收费策略[J]. 浙江大学学报(工学版), 2024, 58(8): 1659-1670.
[9] 王博,刘昌赫,张驰,张敏,邬贵冬. 基于道路监控的高速公路作业区碰撞风险预警[J]. 浙江大学学报(工学版), 2024, 58(6): 1221-1232.
[10] 冯驰,梅振宇. 基于自动驾驶车辆调度的停车系统收费策略优化[J]. 浙江大学学报(工学版), 2024, 58(1): 87-95.
[11] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[12] 金立生,华强,郭柏苍,谢宪毅,闫福刚,武波涛. 基于优化DeepSort的前方车辆多目标跟踪[J]. 浙江大学学报(工学版), 2021, 55(6): 1056-1064.
[13] 王浩远,梁煜,张为. 融合多分辨率表征的实时烟雾分割算法[J]. 浙江大学学报(工学版), 2021, 55(12): 2334-2341.
[14] 刘创,梁军. 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163.
[15] 晋耀,张为. 采用Anchor-Free网络结构的实时火灾检测算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2430-2436.