Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 179-190    DOI: 10.3785/j.issn.1008-973X.2026.01.017
能源与动力工程     
弹性螺旋桨结构变形对激励力特性的影响
陈蔚然1(),蔡昊鹏2,吴浩1,卜延鹏1,曹琳琳1,*(),吴大转1
1. 浙江大学 能源工程学院,浙江 杭州 310027
2. 中国科学院 声学研究所,北京 100190
Influence of structural deformation of elastic propeller on excitation force characteristics
Weiran CHEN1(),Haopeng CAI2,Hao WU1,Yanpeng BU1,Linlin CAO1,*(),Dazhuan WU1
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(3586 KB)   HTML
摘要:

为了探究弹性螺旋桨在航行体复杂伴流场中的结构变形规律及其对激励力的影响机理,采用计算流体力学/有限元流固耦合方法开展航行体-螺旋桨组合模型的数值模拟. 根据由谐调分析得到的均匀与非均匀水下伴流场特性,分析不同伴流场中弹性螺旋桨的稳态变形与动态变形规律. 对比刚性与弹性螺旋桨的激励力时均值与脉动幅值的差异,分析结构变形对激励力产生影响的内在机理. 研究结果表明,弹性螺旋桨的稳态变形主要由伴流场中的时均载荷驱动,螺距角增大导致轴向力时均值提升了9.5%;动态变形主要由非均匀伴流场中的脉动载荷驱动,能够缓冲来流激励并自适应调节,从而显著抑制螺旋桨轴向激励力叶频处的脉动幅值,降幅达到86.1%. 研究揭示了弹性螺旋桨结构变形对激励力的调控机制,为船舶推进系统的应用和激励力控制提供了理论依据.

关键词: 弹性螺旋桨流固耦合伴流场结构变形激励力    
Abstract:

A fluid-structure interaction method based on computational fluid dynamics and finite element analysis was employed for conducting numerical simulation of vehicle-propeller combined models to investigate the structural deformation law of an elastic propeller in the complex wake field of a vehicle and the effect of this deformation on excitation forces. Based on the characteristics of both uniform and non-uniform submarine wake fields obtained through harmonic analysis, the steady and dynamic deformation characteristics of the elastic propeller under different wake fields were analyzed. The rigid and elastic propellers were compared in terms of the time-averaged value and the fluctuating amplitude of excitation forces, so as to analyze the underlying mechanism by which the structural deformation affected the excitation forces. The experimental results showed that steady deformation of the elastic propeller was mainly driven by the time-averaged load in the wake field, and the increased pitch angle led to a 9.5% rise in the time-averaged axial force. The dynamic deformation, which was mainly driven by the fluctuating load in the non-uniform wake field, could buffer the inflow excitation and provide adaptive regulation, thus significantly suppressing the pulsating amplitude of the propeller’s axial excitation force at the blade frequency with a reduction of 86.1%. This study reveals the regulatory mechanism of structural deformation of elastic propellers on excitation forces and provides theoretical support for the application of marine propulsion systems and the control of excitation forces.

Key words: elastic propeller    fluid-structure interaction    wake field    structural deformation    excitation force
收稿日期: 2025-03-11 出版日期: 2025-12-15
:  U 664.34  
基金资助: 国家自然科学基金联合基金资助项目(U2341242).
通讯作者: 曹琳琳     E-mail: 22327161@zju.edu.cn;caolinlin@zju.edu.cn
作者简介: 陈蔚然(2002—),女,硕士生,从事船舶推进技术研究. orcid.org/0009-0009-4148-7779. E-mail:22327161@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈蔚然
蔡昊鹏
吴浩
卜延鹏
曹琳琳
吴大转

引用本文:

陈蔚然,蔡昊鹏,吴浩,卜延鹏,曹琳琳,吴大转. 弹性螺旋桨结构变形对激励力特性的影响[J]. 浙江大学学报(工学版), 2026, 60(1): 179-190.

Weiran CHEN,Haopeng CAI,Hao WU,Yanpeng BU,Linlin CAO,Dazhuan WU. Influence of structural deformation of elastic propeller on excitation force characteristics. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 179-190.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.017        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/179

图 1  不同附体的航行体几何模型
图 2  螺旋桨几何模型
材料ρ/(kg·m?3)E/GPaμ
聚甲醛148030.35
镍铝青铜79001930.33
表 1  材料属性
图 3  航行体-螺旋桨组合模型的计算域
图 4  流体域网格划分示意图
图 5  固体域表面网格
图 6  水翼计算域
图 7  水翼计算域网格划分示意图
数据来源CLθ/(°)
刚性水翼弹性水翼
试验测量1.0651.18?0.39
数值模拟1.0781.13?0.37
误差/%1.224.245.13
表 2  水翼升力系数的计算值与试验值
图 8  弹性水翼垂向位移时域图
图 9  弹性水翼垂向位移计算值与试验值
图 10  桨盘面处无量纲轴向速度云图
图 11  桨盘面处无量纲轴向速度的周向分布图
图 12  不同伴流场的谐调分析结果
图 13  弹性螺旋桨位移云图
图 14  弹性螺旋桨等效应力云图
图 15  149~150圈螺旋桨位移时域图
图 16  结构变形监测点位置示意图
图 17  149~150圈前缘监测点位移时域图
图 18  弹性螺旋桨叶片前缘与后缘的时均位移分布
图 19  螺旋桨螺距角与扭转角的关系示意图
r/RpropΦrig/(°)θS-1/(°)θS-2/(°)
0.355.8550.0390.037
0.450.0860.1190.111
0.544.6990.2120.197
0.639.2740.3180.294
0.733.8810.5300.482
0.828.8810.8670.831
0.924.6990.6140.552
1.021.6540.6200.548
表 3  不同半径处螺旋桨的螺距角及扭转角
模型Fx/NFy/NFz/NT/(N·m)
S-1-elastic0.1660.557507.329.7
S-1-rigid0.1600.420463.326.8
S-2-elastic0.00131?0.00233486.528.8
S-2-rigid0.00182?0.00158459.626.6
表 4  不同模型中螺旋桨激励力时均值
图 20  叶片速度三角形示意图
图 21  动态变形对单叶片轴向力波动幅度的影响
图 22  刚性和弹性螺旋桨单叶片轴向激励力特性
图 23  十叶片弹性螺旋桨的整体动态变形特性
图 24  十叶片刚性和弹性螺旋桨的整体轴向激励力特性
1 李子如, 李广辉, 何朋朋, 等 复合材料螺旋桨非定常流固耦合特性数值分析[J]. 华中科技大学学报: 自然科学版, 2019, 47 (9): 7- 13
LI Ziru, LI Guanghui, HE Pengpeng, et al Numerical analysis of unsteady fluid-structure interaction of composite marine propellers[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2019, 47 (9): 7- 13
2 YOUNG Y L Fluid-structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids and Structures, 2008, 24 (6): 799- 818
doi: 10.1016/j.jfluidstructs.2007.12.010
3 何朋朋. 船用复合材料螺旋桨流固声耦合特性数值研究[D]. 武汉: 武汉理工大学, 2019.
HE Pengpeng. Numerical research of fluid-structure-acoustics coupling characteristics of marine composite propellers [D]. Wuhan: Wuhan University of Technology, 2019.
4 李雪芹, 郭双喜, 陈科 基于铺覆模拟的复合材料螺旋桨叶片分区域铺层优化[J]. 宇航材料工艺, 2022, 52 (1): 45- 51
LI Xueqin, GUO Shuangxi, CHEN Ke Regional stacking sequence optimization of composite propeller blade based on draping simulation[J]. Aerospace Materials & Technology, 2022, 52 (1): 45- 51
doi: 10.12044/j.issn.1007-2330.2022.01.006
5 洪毅, 赫晓东 复合材料船用螺旋桨设计与CFD/FEM计算[J]. 哈尔滨工业大学学报, 2010, 42 (3): 404- 408
HONG Yi, HE Xiaodong Design of composite marine propeller and the calculation of CFD/FEM[J]. Journal of Harbin Institute of Technology, 2010, 42 (3): 404- 408
doi: 10.11918/j.issn.0367-6234.2010.03.016
6 ZHANG X, HONG Y, LIU W, et al Improving the propulsion performance of composite propellers under off-design conditions[J]. Applied Ocean Research, 2020, 100: 102164
doi: 10.1016/j.apor.2020.102164
7 王玮, 刘平, 杨光 弹性螺旋桨的轴向非定常力分析[J]. 海军工程大学学报, 2017, 29 (6): 28- 32
WANG Wei, LIU Ping, YANG Guang Axial unsteady force analysis of flexible propeller[J]. Journal of Naval University of Engineering, 2017, 29 (6): 28- 32
8 武兴伟, 邹冬林, 董新国, 等 弹性螺旋桨纵向激励力特性研究[J]. 噪声与振动控制, 2023, 43 (1): 7- 11
WU Xingwei, ZOU Donglin, DONG Xinguo, et al Study on the longitudinal excitation force characteristics of elastic propellers[J]. Noise and Vibration Control, 2023, 43 (1): 7- 11
doi: 10.3969/j.issn.1006-1355.2023.01.002
9 丁永乐, 宋保维, 王鹏 柔性螺旋桨非定常流场及结构动态响应数值计算[J]. 哈尔滨工程大学学报, 2019, 40 (3): 456- 461
DING Yongle, SONG Baowei, WANG Peng Numerical investigation of the unsteady flow and structural dynamics of a flexible propeller[J]. Journal of Harbin Engineering University, 2019, 40 (3): 456- 461
doi: 10.11990/jheu.201712053
10 ZOU D, JIAO C, TA N, et al Theoretical study on the axial excitation force transmission characteristics of marine propellers[J]. Ocean Engineering, 2019, 189: 106364
doi: 10.1016/j.oceaneng.2019.106364
11 姜宜辰, 黄磊, 代金池, 等 弹性对螺旋桨激励力和噪声特性影响分析[J]. 哈尔滨工程大学学报, 2025, 46 (1): 1- 9
JIANG Yichen, HUANG Lei, DAI Jinchi, et al Influence of elasticity on propeller excitation force and noise characteristics[J]. Journal of Harbin Engineering University, 2025, 46 (1): 1- 9
doi: 10.11990/jheu.202302020
12 GROVES N, HUANG T, CHANG M. Geometric characteristics of DARPA suboff models: DTRC model numbers 5470 and 5471 [R]. Bethesda: David Taylor Research Center, 1989.
13 SEVIK M. Sound radiation from a subsonic rotor subjected to turbulence [C]// Fluid Mechanics Acoustics and Design of Turbomachinery. State College: NASA, 1974: 493–512.
14 田畅, 夏林生, 付敏飞, 等 潜艇伴流场对螺旋桨激励力的影响[J]. 中国舰船研究, 2023, 18 (3): 111- 121
TIAN Chang, XIA Linsheng, FU Minfei, et al Influence of wake field on propeller exciting force of submarine[J]. Chinese Journal of Ship Research, 2023, 18 (3): 111- 121
15 田畅. 水下航行器伴流场对推进器激励力特性的影响研究[D]. 杭州: 浙江大学, 2022.
TIAN Chang. Research on the influence of the wake field of underwater vehicles on propulsor exciting force characteristics [D]. Hangzhou: Zhejiang University, 2022.
16 DUCOIN A, YOUNG Y L, SIGRIST J F. Hydroelastic responses of a flexible hydrofoil in turbulent, cavitating flow [C]// Proceedings of the ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise. Montreal: ASME Press, 2010: 493–502.
17 DUCOIN A, ASTOLFI J A, SIGRIST J F An experimental analysis of fluid structure interaction on a flexible hydrofoil in various flow regimes including cavitating flow[J]. European Journal of Mechanics-B/Fluids, 2012, 36: 63- 74
doi: 10.1016/j.euromechflu.2012.03.009
18 DUCOIN A, YOUNG Y L Hydroelastic response and stability of a hydrofoil in viscous flow[J]. Journal of Fluids and Structures, 2013, 38: 40- 57
doi: 10.1016/j.jfluidstructs.2012.12.011
19 DUCOIN A, ASTOLFI J A, GOBERT M L An experimental study of boundary-layer transition induced vibrations on a hydrofoil[J]. Journal of Fluids and Structures, 2012, 32: 37- 51
doi: 10.1016/j.jfluidstructs.2011.04.002
[1] 韩怡萱,吴洋,顾晨昀,冯伟军,安琦. 结构参数对梯形滑梁式空气箔片轴承润滑性能的影响[J]. 浙江大学学报(工学版), 2026, 60(1): 138-147.
[2] 季廷炜,王亮,谢芳芳,张鑫帅,郑畅东. 基于非线性动力学稀疏辨识的涡致振动系统建模[J]. 浙江大学学报(工学版), 2025, 59(2): 402-412.
[3] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[4] 尹亚星,王彤,王承彦,张彦康,徐仕承,谭大鹏. 基于格子Boltzmann的混合过程建模与流致振动特性[J]. 浙江大学学报(工学版), 2023, 57(11): 2217-2226.
[5] 刘夏临,张晟斌,陈佺,舒恒,刘尚各. 基于TOUGH2和FLAC3D的流固弱耦合程序开发及验证[J]. 浙江大学学报(工学版), 2022, 56(8): 1485-1494.
[6] 喻渴来,杨贞军,张昕,刘国华,李辉. 基于孔隙压力黏结单元的准脆性材料水力劈裂模拟[J]. 浙江大学学报(工学版), 2021, 55(11): 2151-2160.
[7] 黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
[8] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[9] 杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.
[10] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.
[11] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[12] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366.
[13] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[14] 刘震涛, 陈思南, 黄瑞, 尹旭, 俞小莉, 魏志明, 张全中. 高功率密度柴油机气缸盖热负荷分析与优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1544-1552.
[15] 张焕宇,郝志勇,郑旭. 柴油机冷却系统散热性能优化设计[J]. J4, 2014, 48(1): 70-75.