Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2269-2276    DOI: 10.3785/j.issn.1008-973X.2025.11.005
机械工程、能源工程     
过头作业上肢肌间耦合及协同
杨延璞(),孟文昊,伍智泓,刘嘉玲,卓玥鸣
长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064
Intermuscular coupling and collaboration of upper limb in overhead work
Yanpu YANG(),Wenhao MENG,Zhihong WU,Jialing LIU,Yueming ZHUO
Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an 710064, China
 全文: PDF(2334 KB)   HTML
摘要:

为了探究不同高度下过头作业上肢肌肉间的耦合和协同特性,指导辅助装置设计与作业改善,结合某复杂装备的维修设计过头作业实验,采集12名被试者在不同过头作业高度下(超过头顶0 cm(H1)、5 cm(H2)、10 cm(H3))的上肢8通道表面肌电(SEMG)信号. 利用广义偏定向相干性(GPDC)计算8块肌肉之间的相干性值,得到不同高度下8块肌肉的全局耦合特性. 通过非负矩阵分解(NMF),解析不同高度下过头作业的肌肉协同模式及协同肌肉. 利用复杂网络建立不同高度下的肌肉功能网络,定量分析肌肉功能网络的连接特性. 研究结果表明,3种不同高度下斜方肌和三角肌与其他肌肉的耦合度最高. 最佳协同模式数均为2,且由协同模式1为主导,协同模式2为辅助完成过头作业. 相较于H2H3H1高度的上肢肌间耦合及协同性更好.

关键词: 过头作业肌间协同肌间耦合广义偏定向相干性(GPDC)非负矩阵分解(NMF)表面肌电复杂网络    
Abstract:

An overhead work experiment was designed based on the maintenance of a certain complex piece of equipment in order to explore the intermuscular coupling and synergy characteristics of upper limb muscles during overhead work at different heights. This experiment aimed to inform the design of assistive devices and task improvements. Surface electromyography (sEMG) data were collected from eight upper limb channels in 12 participants as they performed overhead work at three distinct heights: level with the top of the head (H1), 5 cm above the head (H2), and 10 cm above the head (H3). Generalized partial directed coherence (GPDC) was used to calculate the coherence values among the eight muscles, revealing the global coupling characteristics at different heights. Non-negative matrix factorization (NMF) was applied to analyze muscle synergy patterns and the synergistic muscles associated with each task height. Complex network analysis was employed to construct muscle functional networks at different heights, enabling a quantitative analysis of network connectivity characteristics. Results indicated that the trapezius and deltoid muscles exhibited the highest coupling with other muscles across the three heights. The optimal number of synergy patterns was two, with synergy pattern 1 primarily dominating the task and synergy pattern 2 serving as a supplementary role. Height H1 demonstrated better coupling and synergy of upper limb muscles compared to H2 and H3.

Key words: overhead work    intermuscular coordination    intermuscular coupling    generalized partial directed coherence (GPDC)    nonnegative matrix factorization (NMF)    surface electromyography    complex network
收稿日期: 2024-11-05 出版日期: 2025-10-30
:  TP 391  
基金资助: 基础加强计划技术领域基金资助项目(2021-JCJQ-JJ-1018);长安大学中央高校基金资助项目(300102253107).
作者简介: 杨延璞(1984—),男,教授,从事人机工效的研究. orcid.org/0000-0002-5405-7235. E-mail: yangyanpu@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨延璞
孟文昊
伍智泓
刘嘉玲
卓玥鸣

引用本文:

杨延璞,孟文昊,伍智泓,刘嘉玲,卓玥鸣. 过头作业上肢肌间耦合及协同[J]. 浙江大学学报(工学版), 2025, 59(11): 2269-2276.

Yanpu YANG,Wenhao MENG,Zhihong WU,Jialing LIU,Yueming ZHUO. Intermuscular coupling and collaboration of upper limb in overhead work. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2269-2276.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.005        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2269

图 1  sEMG采集实验的上肢肌肉分布
图 2  H3高度下的上肢各肌肉PDC面积与总面积之比
图 3  不同高度下的VAF值
图 4  NMF分解后不同高度下各协同模式的肌肉激活系数
图 5  NMF分解后不同高度各协同模式的基矩阵
图 6  不同高度下的肌间协同关系
高度模式Kf
PMBITRIDEBRFCRTRALA
H1w10.0640.0800.2071.0000.0920.0710.8820.225
H1w20.5140.1670.1391.0000.1170.3000.3400.548
H2w10.0340.0850.1640.9760.0500.0261.0000.115
H2w20.5710.5540.2821.0000.2340.2010.9770.654
H3w10.0590.1730.2320.5050.1240.1281.0000.133
H3w21.0000.2370.0680.5300.1060.2450.7210.648
表 1  上肢肌肉总信息流出量的归一化结果
图 7  不同高度下的肌肉功能网络
高度DCL
H14.5000.8951.000
H23.2500.8331.012
H34.2500.8081.105
表 8  不同高度下的网络参数
1 杨延璞, 吕苓玮, 韩钟剑, 等 过头作业上肢负荷评估研究综述[J]. 计算机集成制造系统, 2024, 30 (11): 3771- 3785
YANG Yanpu, LV Lingwei, HAN Zhongjian, et al Research review of workload assessment for the upper extremities in overhead work[J]. Computer Integrated Manufacturing Systems, 2024, 30 (11): 3771- 3785
2 王忠旭, 李刚, 秦汝莉, 等 汽车装配工人工作相关肌肉骨骼损伤危险暴露水平及发病调查研究[J]. 环境与职业医学, 2012, 29 (1): 6- 8
WANG Zhongxu, LI Gang, QIN Ruli, et al Research on exposure risk level and occurrence of musculoskeletal disorders among automobile assembly workers[J]. Journal of Environmental and Occupational Medicine, 2012, 29 (1): 6- 8
3 BJELLE A, HAGBERG M, MICHAELSON G Occupational and individual factors in acute shoulder-neck disorders among industrial workers[J]. British Journal of Industrial Medicine, 1981, 38 (4): 356- 363
4 RENBERG J, WIGGEN Ø N, TVETENE P Ø S, et al Effect of working position and cold environment on muscle activation level and fatigue in the upper limb during manual work tasks[J]. International Journal of Industrial Ergonomics, 2020, 80: 103035
doi: 10.1016/j.ergon.2020.103035
5 GAROSI E, MAZLOUMI A, JAFARI A H, et al Design and ergonomic assessment of a passive head/neck supporting exoskeleton for overhead work use[J]. Applied Ergonomics, 2022, 101: 103699
doi: 10.1016/j.apergo.2022.103699
6 DICKERSON C R, MCDONALD A C, CHOPP-HURLEY J N. Between two rocks and in a hard place: reflecting on the biomechanical basis of shoulder occupational musculoskeletal disorders [J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2020, 65(5): 001872081989619.
7 MOTABAR H, NIMBARTE A D The effect of task rotation on activation and fatigue response of rotator cuff muscles during overhead work[J]. Applied Ergonomics, 2021, 97: 103461
doi: 10.1016/j.apergo.2021.103461
8 DICKERSON C R, BROOKHAM R L, CHOPP J N The working shoulder: assessing demands, identifying risks, and promoting healthy occupational performance[J]. Physical Therapy Reviews, 2011, 16 (5): 310- 320
doi: 10.1179/1743288X11Y.0000000032
9 RENDA E, LAMANUZZI S, MASO F D, et al The effects of hand dominance, fatigue, and sex on muscle activation during a repetitive overhead fatiguing task[J]. Human Movement Science, 2023, 92: 103149
doi: 10.1016/j.humov.2023.103149
10 YANG Yanpu, LYU Lingwei, HAN Zhongjian, et al Ergonomics assessment of the overhead maintenance of vehicle-mounted radar antenna using digital human modelling[J]. Advanced Design Research, 2023, 1 (2): 63- 70
doi: 10.1016/j.ijadr.2023.09.001
11 田保珍, 范沁红 汽车底盘维修中单手上举操作对肌肉疲劳的影响研究[J]. 中国工程机械学报, 2022, 20 (3): 221- 225
TIAN Baozhen, FAN Qinhong Research on the influence of single hand lifting operation on muscle fatigue in automobile chassis maintenance[J]. Chinese Journal of Construction Machinery, 2022, 20 (3): 221- 225
doi: 10.3969/j.issn.1672-5581.2022.3.zggcjxxb202203007
12 ALABDULKARIM S, KIM S, NUSSBAUM M A Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task[J]. Applied Ergonomics, 2019, 80: 136- 145
doi: 10.1016/j.apergo.2019.05.014
13 MAURICE P, ČAMERNIK J, GORJAN D, et al Objective and subjective effects of a passive exoskeleton on overhead work[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28 (1): 152- 164
doi: 10.1109/TNSRE.2019.2945368
14 赵川, 杨文鑫, 赵晓一 设备、姿势对手过头作业肌肉疲劳的影响研究[J]. 人类工效学, 2024, 30 (3): 12- 17
ZHAO Chuan, YANG Wenxin, ZHAO Xiaoyi Research on the effects of equipment and posture on muscle fatigue in overhead tasks[J]. Human Factors and Ergonomics, 2024, 30 (3): 12- 17
15 D’AVELLA A, PORTONE A, FERNANDEZ L, et al Control of fast reaching movements by muscle synergy combination[J]. The Journal of Neuroscience, 2006, 26 (30): 7791- 7810
doi: 10.1523/JNEUROSCI.0830-06.2006
16 D'AVELLA A, SALTIEL P, BIZZI E Combinations of muscle synergies in the construction of a natural motor behavior[J]. Nature Neuroscience, 2003, 6 (3): 300- 308
doi: 10.1038/nn1010
17 SEO G, PARK J H, PARK H S, et al Developing new intermuscular coordination patterns through an electromyographic signal-guided training in the upper extremity[J]. Journal of NeuroEngineering and Rehabilitation, 2023, 20: 112
doi: 10.1186/s12984-023-01236-2
18 CHEN X, XIE P, ZHANG Y, et al Abnormal functional corticomuscular coupling after stroke[J]. NeuroImage: Clinical, 2018, 19: 147- 159
doi: 10.1016/j.nicl.2018.04.004
19 KERKMAN J N, BEKIUS A, BOONSTRA T W, et al Muscle synergies and coherence networks reflect different modes of coordination during walking[J]. Frontiers in Physiology, 2020, 11: 751
doi: 10.3389/fphys.2020.00751
20 王洪安, 佘青山, 马玉良, 等 卒中后上肢肌间协同耦合分析研究[J]. 传感技术学报, 2020, 33 (10): 1391- 1398
WANG Hongan, SHE Qingshan, MA Yuliang, et al Study on limb intermuscular synergy and coupling after stroke[J]. Chinese Journal of Sensors and Actuators, 2020, 33 (10): 1391- 1398
doi: 10.3969/j.issn.1004-1699.2020.10.003
21 郑行, 佘青山, 高云园, 等 基于传递熵与广义偏定向相干性的肌间耦合分析[J]. 航天医学与医学工程, 2018, 31 (5): 538- 544
ZHENG Xing, SHE Qingshan, GAO Yunyuan, et al Intermuscular coupling analysis based on transfer entropy and generalized partial directed coherence[J]. Space Medicine and Medical Engineering, 2018, 31 (5): 538- 544
22 谢平, 李欣欣, 杨春华, 等 基于表面肌电非负矩阵分解与一致性的肌间协同-耦合关系研究[J]. 中国生物医学工程学报, 2017, 36 (2): 150- 157
XIE Ping, LI Xinxin, YANG Chunhua, et al Research on the intermuscular synergy and coupling analysis based on surface EMG nonnegative matrix factorization-coherence[J]. Chinese Journal of Biomedical Engineering, 2017, 36 (2): 150- 157
doi: 10.3969/j.issn.0258-8021.2017.02.004
23 杜义浩, 齐文靖, 邹策, 等 基于变分模态分解-相干分析的肌间耦合特性[J]. 物理学报, 2017, 66 (6): 345- 354
DU Yihao, QI Wenjing, ZOU Ce, et al Intermuscular coupling characteristics based on variational mode decomposition-coherence[J]. Acta Physica Sinica, 2017, 66 (6): 345- 354
doi: 10.7498/aps.66.068701
24 BACCALA L A, SAMESHIMA K, TAKAHASHI D Y. Generalized partial directed coherence [C]//15th International Conference on Digital Signal Processing. Cardiff: IEEE, 2007: 163-166.
25 BACCALA L A, SAMESHIMA K Partial directed coherence: a new concept in neural structure determination[J]. Biological Cybernetics, 2001, 84 (6): 463- 474
doi: 10.1007/PL00007990
26 LEE D D, SEUNG H S Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401 (6755): 788- 791
doi: 10.1038/44565
27 MARCHIS C D, SEVERINI G, CASTRONOVO A M, et al Intermuscular coherence contributions in synergistic muscles during pedaling[J]. Experimental Brain Research, 2015, 233 (6): 1907- 1919
doi: 10.1007/s00221-015-4262-4
28 WATTS D J, STROGATZ S H. Collective dynamics of small world networks [J]. Nature, 1998, 393(6684): 440 442.
29 BARABASI A L, ALBERT R Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509- 512
doi: 10.1126/science.286.5439.509
30 陈玲玲, 李珊珊, 刘作军, 等 基于表面肌电的下肢肌肉功能网络构建及其应用研究[J]. 自动化学报, 2017, 43 (3): 407- 417
CHEN Lingling, LI Shanshan, LIU Zuojun, et al Construction of lower limbs functional muscle network and its application based on surface EMG[J]. Acta Automatica Sinica, 2017, 43 (3): 407- 417
[1] 马飞,委笑琳,孙启鹏,刘擎,苟慧艳. 考虑互补效应的城市群多模式客运网络鲁棒性[J]. 浙江大学学报(工学版), 2024, 58(2): 388-398.
[2] 王万良,潘杰,王铮,潘家宇. 基于双分支网络的表面肌电信号识别方法[J]. 浙江大学学报(工学版), 2024, 58(11): 2208-2218.
[3] 周雕,熊馨,周建华,宗静,张琪. 卷积神经网络结合子域适应的低采样率肌电手势识别[J]. 浙江大学学报(工学版), 2024, 58(10): 2011-2019.
[4] 张书涛,杨志强,王世杰,刘世锋,张凡,周爱民. 基于复杂网络的用户社区子群需求聚类模型[J]. 浙江大学学报(工学版), 2023, 57(9): 1843-1855.
[5] 杨延璞,龚政,兰晨昕,雷紫荆,王欣蕊. 工业设计决策网络构建及其动态演化仿真[J]. 浙江大学学报(工学版), 2021, 55(12): 2298-2306.
[6] 段有康,陈小刚,桂剑,马斌,李顺芬,宋志棠. 基于相位划分的下肢连续运动预测[J]. 浙江大学学报(工学版), 2021, 55(1): 89-95.
[7] 杨琳,王嘉君. 基于复杂网络模型的城市综合管廊PPP项目风险传递过程研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1666-1676.
[8] 祝鹏,余建波,郑小云,王永松,孙习武. 机械装配过程的偏差传递网络建模与误差溯源[J]. 浙江大学学报(工学版), 2019, 53(8): 1582-1593.
[9] 都明宇, 鲍官军, 杨庆华, 王志恒, 张立彬. 基于改进支持向量机的人手动作模式识别方法[J]. 浙江大学学报(工学版), 2018, 52(7): 1239-1246.
[10] 赵翠莲, 徐浩宇, 罗林辉, 王凯. 熵在不同等级偏瘫患者sEMG运动检测中的应用[J]. 浙江大学学报(工学版), 2018, 52(4): 798-805.
[11] 胡钢, 徐翔, 过秀成. 基于解释结构模型的复杂网络节点重要性计算[J]. 浙江大学学报(工学版), 2018, 52(10): 1989-1997.
[12] 戴彩艳, 陈崚, 李斌, 陈伯伦. 复杂网络中的抽样链接预测[J]. 浙江大学学报(工学版), 2017, 51(3): 554-561.
[13] 刘磊, 杨鹏, 刘作军. 采用多核相关向量机的人体步态识别[J]. 浙江大学学报(工学版), 2017, 51(3): 562-571.
[14] 杨钟亮, 唐智川, 陈育苗, 高增桂. 面向双侧训练的前臂外骨骼肌肉力-电关系识别模型[J]. 浙江大学学报(工学版), 2014, 48(12): 2152-2161.
[15] 宣琦, 吴铁军. 复杂open shop问题的网络模型及
调度规则设计
[J]. J4, 2011, 45(6): 961-968.