Please wait a minute...
浙江大学学报(工学版)
计算机科学技术     
面向双侧训练的前臂外骨骼肌肉力-电关系识别模型
杨钟亮1, 唐智川2, 陈育苗3, 高增桂2
1. 东华大学 机械工程学院 上海 201620;2. 浙江大学 现代工业设计研究所,浙江 杭州 310027;3.东华大学 服装·艺术设计学院 上海 200051
Force-sEMG relations recognition models of forearm exoskeleton for bilateral training
YANG Zhong-liang1, TANG Zhi-chuan2, CHEN Yu-miao3, GAO Zeng-gui2
1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China; 2. Modern Industrial Design Institute, Zhejiang University, Hangzhou 310027, China; 3. Fashion·Art Design Institute, Donghua University, Shanghai 200051, China
 全文: PDF(2743 KB)   HTML
摘要:

为了使前臂外骨骼系统能准确识别健肢运动的肌力水平,并带动患肢进行双侧训练,提出基于表面肌电的肌肉自主收缩力-电关系识别模型.通过4名被试者,实验采集前臂4种抓握力度下的肌电信号和握力值.利用单因素方差分析与多重比较产生的同类子集,提取11个具有显著性差异的肌电时域指标作为特征值.采用Elman神经网络构建力-电关系分类模型和肌力预测模型,并与基于支持向量机和基因表达式编程的预测模型进行性能比较.实验结果表明:Elman模型能够成功识别4种不同握力水平,建模效率高于基因表达式编程模型,肌力预测的泛化性能优于支持向量机模型.开发一个前臂外骨骼,在双侧训练的控制中验证了方法的有效性.

Abstract:

To accurately recognize muscle forces of the non-paretic limb movement in forearm exoskeleton system, and drive the paretic limb for bilateral training in stroke, the force and surface electromyography (sEMG) relations recognition models of voluntary muscle contraction were proposed. The sEMG signals and strength values were recorded from 4 participants under 4 levels of forearm grasp forces by experiments. Using one-way ANOVA and multiple comparisons test, 11 features of sEMG time domain indices with significant differences were extracted from homogeneous subsets. The force-sEMG relations classification model and the myodynamia prediction model were constructed based on Elman network. For comparison, another prediction models using support vector machine (SVM) and gene expression programming (GEP) were presented here. Experimental results show that the Elman model can successfully recognize 4 levels of grasp forces, gives better results on modeling efficiency than the GEP model, and gives better generalization performance on myodynamia predicting than the SVM model. A forearm exoskeleton was developed to demonstrate the viability of the present modeling methods in the control of bilateral training.

出版日期: 2014-12-01
:  TP 391.4  
基金资助:

国家自然科学基金资助项目(51305077);中央高校基本科研业务费专项资金资助项目(2232013D3-31).

作者简介: 杨钟亮(1982—),男,博士,研究方向为生物启发设计、人机工程等.E-mail: yzl@dhu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨钟亮, 唐智川, 陈育苗, 高增桂. 面向双侧训练的前臂外骨骼肌肉力-电关系识别模型[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.12.008.

YANG Zhong-liang, TANG Zhi-chuan, CHEN Yu-miao, GAO Zeng-gui. Force-sEMG relations recognition models of forearm exoskeleton for bilateral training. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.12.008.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.12.008        http://www.zjujournals.com/eng/CN/Y2014/V48/I12/2152

[1] FRISOLI A, PROCOPIO C, CHISARI C, et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke[J]. Journal of Neuroengineering and Rehabilitation, 2012, 9(1): 36.
[2] KREBS H I, VOLPE B T, AISEN M L, et al. Increasing productivity and quality of care: robot-aided neuro-rehabilitation[J]. Journal of Rehabilitation Research and Development, 2000, 37(6): 639-652.
[3] LOUREIRO R, AMIRABDOLLAHIAN F, TOPPING M, et al. Upper limb robot mediated stroke therapy-GENTLE/s approach[J]. Autonomous Robots, 2003, 15(1): 35-51.
[4] YUBO Z, ZIXI W, LINHONG J, et al. The clinical application of the upper extremity compound movements rehabilitation training robot[C]∥9th International Conference on Rehabilitation Robotics.[S.l]: IEEE, 2005: 91-94.
[5] 张勤超. 手部功能康复机器人机械系统的设计与研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
ZHANG Qin-chao. Design and research of the mechanical system for a hand rehabilitation robot[D]. Harbin: Harbin Institute of Technology, 2011.
[6] 徐宝国,彭思,宋爱国.基于运动想象脑电的上肢康复机器人[J].机器人,2011, 33(3): 307-313.
XU Bao-guo, PENG Si, SONG Ai-guo. Upper-limb rehabilitation robot based on motor imagery EEG[J]. Robot, 2011, 33(3): 307-313.
[7] 吴军.上肢康复机器人及相关控制问题研究[D].武汉: 华中科技大学, 2012.
WU Jun. The research on upper limb rehabilitation robot and related control problem[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[8] 王生泽,金韬.一种气动驱动新型上肢康复机器人[J].机械设计与制造, 2011(3): 165-167.
WANG Sheng-ze, JIN Tao. A Novel upper limb rehabilitation robot by pneumatic actuators[J]. Machinery Design & Manufacture, 2011(3): 165-167.
[9] 吴銮.基于FPA的手指康复器研究[D].杭州: 浙江工业大学, 2012.
WU Luan. Research on finger rehabilitation device based on flexible pneumatic actuator FPA[D]. Hangzhou: Zhejiang University of Technology, 2012.
[10] CAURAUGH J H, LODHA N, NAIK S K, et al. Bilateral movement training and stroke motor recovery progress: a structured review and meta-analysis[J]. Human Movement Science, 2010, 29(5): 853-870.
[11] 许纲.偏瘫后上肢及手的双侧训练[J].中华物理医学与康复杂志, 2007,29(4): 275-279.
XU Gang. upper limb and hand bilateral training after hemiplegia[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2007,29(4): 275-279.
[12] LUM P S, BURGAR C G, VAN DER LOOS M, et al. The MIME robotic system for upper-limb neuro-rehabilitation: Results from a clinical trial in subacute stroke[C]∥9th International Conference on Rehabilitation Robotics. [S.l]: IEEE, 2005: 511-514.
[13] FRISOLI A, LOCONSOLE C, LEONARDIS D, et al. A new gaze-BCI-Driven control of an upper limb exoskeleton for rehabilitation in real-world tasks[J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2012, 42(6): 1169-1179.
[14] LI C, INOUE Y, LIU T, et al. A new master-slave control method for implementing force sensing and energy recycling in a bilateral arm training robot[J]. International Journal of Innovative Computing, Information and Control, 2011, 7(1): 471-485.
[15] ROSEN J, PERRY J C. Upper limb powered exoskeleton[J]. International Journal of Humanoid Robotics, 2007, 4(03): 529-548.
[16] 王健.sEMG信号分析及其应用研究进展[J].体育科学, 2000, 20(4): 56-60.
WANG Jian. Some advances in the research of sEMG signal analysis and its application[J]. Sport Science, 2000, 20(4): 56-60.
[17] 张旭.基于表面肌电信号的人体动作识别与交互[D].合肥:中国科学技术大学, 2010.
XU Zhang. Body gesture recognition and interaction based on surface electromyogram[D]. Hefei: Universify of Seience and Teehnology of China, 2010.
[18] LOCONSOLE C, LEONARDIS D, BARSOTTI M, et al. An emg-based robotic hand exoskeleton for bilateral training of grasp[C]∥World Haptics Conference, 2013. \[S.l.\]: IEEE, 2013: 537-542.
[19] 杨钟亮.基于主客观联合测评的动态人机接触面工效学研究[D].杭州:浙江大学, 2012.
YANG Zhong-liang. Ergonomics study of dynamic human-product contact surface based on subjective and objective evaluation[D]. Hangzhou: Zhejiang University, 2012.
[20] 吴剑锋.基于肌电信号的人体下肢运动信息获取技术研究[D].杭州: 浙江大学, 2008.
WU Jian-feng. Researchon human lower-limb motion information acquisition technology based on EMG[D]. Hangzhou: Zhejiang University, 2008.
[21] 梅品高,罗志增.基于小波包分析和Elman网络的肌电信号处理[J].机电工程,2008, 25(1): 710.
MEI Pin-gao, LUO ZHi-zeng. SEMG disposal based on waVelet packet analysis and Elman neural network[J]. Mechanical & Electrical Engineering Magazine, 2008, 25(1): 710.
[22] 杨钟亮,王健,陈育苗.基于表面肌电的头部运动体态语言情感识别模型[J].计算机辅助设计与图形学学报, 2014, 26(9): 1396-1402.
YANG Zhong-liang, WANG Jian, CHEN Yu-miao. Surface EMG based emotion recognition model for body language of head movements[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(9): 1396-1402.
[23] 杨钟亮,孙守迁,张克俊.基于基因表达式编程的坐姿舒适性主观测评模型与系统[J].计算机集成制造系统,2012, 18(10): 2138-2144.
YANG Zhong-liang, SUN Shou-qian, ZHANG Ke-jun. Subjective evaluation model and system for sitting comfort based on gene expression programming[J]. Computer Integrated Manufacturing Systems, 2012, 18(10): 2138-2144.
[24] SAVILLE D J. Multiple comparison procedures: the practical solution[J]. The American Statistician, 1990, 44(2): 174-180.

[1] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[2] 董巍, 沈会良. 双向纹理函数稀疏采集与重建[J]. 浙江大学学报(工学版), 2016, 50(12): 2364-2370.
[3] 郭浩东, 陈岭, 丁永锋, 陈根才. 运动识别中基于主题的特征构建方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1149-1154.
[4] 唐有宝, 卜巍, 邬向前. 多层次MSER自然场景文本检测[J]. 浙江大学学报(工学版), 2016, 50(6): 1134-1140.
[5] 沈延斌, 陈岭, 郭浩东, 陈根才. 基于深度学习的放置方式和位置无关运动识别[J]. 浙江大学学报(工学版), 2016, 50(6): 1141-1148.
[6] 陈实, 郑楷洪, 孙凌云, 李彦. 可穿戴计算设备中振动表情的设计与应用[J]. 浙江大学学报(工学版), 2015, 49(12): 2298-2304.
[7] 杜歆,邹泷. 视点合成中基于深度的空洞修复[J]. 浙江大学学报(工学版), 2015, 49(9): 1616-1624.
[8] 吴一全,殷骏,朱丽,袁永明. 基于蜂群优化或分解的二维Arimoto灰度熵阈值分割[J]. 浙江大学学报(工学版), 2015, 49(9): 1625-1633.
[9] 孙凌云, 何博伟, 刘征, 杨智渊. 基于语义细胞的语音情感识别[J]. 浙江大学学报(工学版), 2015, 49(6): 1001-1009.
[10] 王媛媛, 郭延恩, 施国全, 韦俊霞, 夏顺仁. 基于声图像的海底地形边界提取算法[J]. 浙江大学学报(工学版), 2015, 49(2): 376-383.
[11] 程健, 项志宇, 于海滨, 刘济林. 城市复杂环境下基于三维激光雷达实时车辆检测[J]. 浙江大学学报(工学版), 2014, 48(12): 2101-2106.
[12] 杨力,刘济林. 基于非监督特征学习的分叉道路检测算法[J]. 浙江大学学报(工学版), 2014, 48(9): 1558-1563.
[13] 杨冰,王小华,杨鑫,黄孝喜. 基于HOG金字塔人脸识别方法[J]. 浙江大学学报(工学版), 2014, 48(9): 1564-1569.
[14] 杨力, 刘俊毅, 王延长, 刘济林. 基于全景相机和全向激光雷达的致密三维重建[J]. 浙江大学学报(工学版), 2014, 48(8): 1481-1487.
[15] 胡祝华, 赵瑶池, 程杰仁, 彭金莲. 基于改进DRLSE的运动目标分割方法[J]. 浙江大学学报(工学版), 2014, 48(8): 1488-1495.