Please wait a minute...
浙江大学学报(工学版)
普适计算与人机交互     
基于深度学习的放置方式和位置无关运动识别
沈延斌, 陈岭, 郭浩东, 陈根才
浙江大学 计算机科学与技术学院,浙江 杭州 310027
Deep learning based activity recognition independent of device orientation and placement
SHEN Yan bin, CHEN Ling, GUO Hao dong, CHEN Gen cai
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1926 KB)   HTML
摘要:

针对传统基于加速度传感器的运动识别方法依赖于传感设备的放置方式和位置的问题,提出一种基于深度学习的运动识别方法,且与放置方式和位置无关.使用栈式自动编码器构建深度网络,结合逐层无监督学习和全局有监督微调的方式,快速、有效地学习出原始数据的深层特征.设计不同放置方式和不同设备放置位置的学习策略,并利用所学特征对不同设备放置方式和位置下的运动进行识别.实验结果表明:基于深度学习的方法可以从原始数据中提取出与放置方式和位置无关的深度特征,相比传统方法,能够有效提高在非固定加速度传感设备放置方式和位置下的运动识别准确率.

Abstract:

An activity recognition method based on deep learning and independent of device orientation and placement was proposed, to address the problem that traditional acceleration activity recognition methods usually depend on the fixed device orientations and placements. Based on a layerwise unsupervised learning and a global supervised finetuning, deep neural networks were constructed by stacked autoencoder. Then, the deep features of the proposed method were efficiently and effectively extracted from original acceleration data. Finally, a cross orientation and placement evaluation strategy was presented to recognize the activities under different device orientations and placements. Experimental results show that the proposed method can extract discriminative deep features from original data and achieve better performance than other methods under the condition of uncontrolled acceleration device orientation and placement.

出版日期: 2016-06-01
:  TP 391.4  
基金资助:

国家自然科学基金资助项目(60703040,61332017)|浙江省科技计划资助项目(2011C13042,2015C33002).

通讯作者: 陈岭,男,副教授. ORCID: 0000000319345992.     E-mail: lingchen@cs.zju.edu.cn
作者简介: 沈延斌(1989—),男,硕士生,从事普适计算研究.ORCID: 0000000153131846. E-mail: tcsyb@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

沈延斌, 陈岭, 郭浩东, 陈根才. 基于深度学习的放置方式和位置无关运动识别[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.06.018.

SHEN Yan bin, CHEN Ling, GUO Hao dong, CHEN Gen cai. Deep learning based activity recognition independent of device orientation and placement. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.06.018.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.06.018        http://www.zjujournals.com/eng/CN/Y2016/V50/I6/1141

[1] AMFT O, STGER M, LUKOWICZ P, et al. Analysis of chewing sounds for dietary monitoring [C] ∥ Proceedings of International Conference on Ubiquitous Computing. Tokyo: Springer, 2005: 56-72.
[2] ALBINALI F, GOODWIN M S, INTILLE S S. Recognizing stereotypical motor movements in the laboratory and classroom: a case study with children on the autism spectrum [C] ∥ Proceedings of International Conference on Ubiquitous Computing. Orlando: ACM, 2009: 71-80.
[3] LADHA C, HAMMERLA N Y, OLIVIER P, et al. ClimbAX: skill assessment for climbing enthusiasts [C] ∥ Proceedings of International Joint Conference on Pervasive and Ubiquitous Computing. Zurich: ACM, 2013: 235-244.
[4] ATALLAH L, YANG G Z. The use of pervasive sensing for behaviour profiling: a survey [J]. Pervasive and Mobile Computing, 2009, 5(5): 447-464.
[5] DEVAUL R W, DUNN S. Realtime motion classification for wearable computing applications [R]. Cambridge: MIT Media Laboratory, 2001.
[6] LEE S W, MASE K. Activity and location recognition using wearable sensors [J]. Pervasive Computing, 2002, 1(3): 24-32.
[7] BAO L, INTILLE S S. Activity recognition from userannotated acceleration data [C] ∥ Proceedings of International Conference on Pervasive Computing. Vienna: Springer, 2004: 117.
[8] KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers [J]. ACM SIGKDD Explorations Newsletter, 2011, 12(2): 74-82.
[9] RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data [C] ∥ Proceedings of Conference on Innovative Applications of Artificial Intelligence. Pittsburgh: AAAI, 2005: 1541-1546.
[10] OLGUIN D O, PENTLAND A S. Human activity recognition: Accuracy across common locations for wearable sensors [C] ∥ Proceedings of International Symposium on Wearable Computers (Student Colloquium). Montreux: IEEE, 2006: 11-13.
[11] BAYATI H, DEL R MILLN J, CHAVARRIAGA R. Unsupervised adaptation to onbody sensor displacement in accelerationbased activity recognition [C] ∥ Proceedings of International Symposium on Wearable Computers. San Francisco: IEEE, 2011: 71-78.
[12] CHAVARRIAGA R, BAYATI H, MILLN J D. Unsupervised adaptation for accelerationbased activity recognition: robustness to sensor displacement androtation [J]. Personal and Ubiquitous Computing, 2013, 17(3): 479-490.
[13] 侯仓健,陈岭,吕明琪,等.基于加速度传感器的放置方式和位置无关运动识别[J].计算机科学,2014, 41(10): 7679, 94.
HOU Cangjian, CHEN Ling, LV Mingqi, et al. Accelerationbased activity recognition independent of device orientation and placement [J]. Computer Science, 2014, 41(10): 7679, 94.
[14] LESTER J, CHOUDHURY T, BORRIELLO G. A practical approach to recognizing physical activities [C] ∥Proceedings of International Conference on PERVASIVE. Dublin: Springer, 2006: 116.
[15] PLTZ T, HAMMERLA N Y, OLIVIER P. Feature learning for activity recognition in ubiquitous computing [C] ∥ Proceedings of International Joint Conference on Artificial Intelligence. Barcelona: AAAI, 2011: 1729-1734.
[16] VOLLMER C, GROSS H M, EGGERT J P. Learning Features for Activity Recognition with ShiftInvariant Sparse Coding [C] ∥ Proceedings of International Conference on Artificial Neural Networks. Sofia: Springer, 2013: 367-374.
[17] ZENG M, NGUYEN L T, YU B, et al. Convolutional neural networks for human activity recognition using mobile sensors [C] ∥ Proceedings of Sixth International Conference on Mobile Computing, Applications and Services. Austin: IEEE, 2014: 197-205.
[18] GUO H, CHEN L, CHEN G, LV M. Smartphonebased activity recognition independent of device orientation and placement [J]. International Journal of Communication Systems, 2015.
[19] MARTINEZ H P, BENGIO Y, YANNAKAKIS G N. Learning deep physiological models of affect [J]. Computational Intelligence Magazine, IEEE, 2013, 8(2): 2033.
[20] PALM R B. Prediction as a candidate for learning deep hierarchical models of data [J]. Technical University of Denmark, Palm, 2012, 25.

[1] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[2] 董巍, 沈会良. 双向纹理函数稀疏采集与重建[J]. 浙江大学学报(工学版), 2016, 50(12): 2364-2370.
[3] 郭浩东, 陈岭, 丁永锋, 陈根才. 运动识别中基于主题的特征构建方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1149-1154.
[4] 唐有宝, 卜巍, 邬向前. 多层次MSER自然场景文本检测[J]. 浙江大学学报(工学版), 2016, 50(6): 1134-1140.
[5] 陈实, 郑楷洪, 孙凌云, 李彦. 可穿戴计算设备中振动表情的设计与应用[J]. 浙江大学学报(工学版), 2015, 49(12): 2298-2304.
[6] 吴一全,殷骏,朱丽,袁永明. 基于蜂群优化或分解的二维Arimoto灰度熵阈值分割[J]. 浙江大学学报(工学版), 2015, 49(9): 1625-1633.
[7] 杜歆,邹泷. 视点合成中基于深度的空洞修复[J]. 浙江大学学报(工学版), 2015, 49(9): 1616-1624.
[8] 孙凌云, 何博伟, 刘征, 杨智渊. 基于语义细胞的语音情感识别[J]. 浙江大学学报(工学版), 2015, 49(6): 1001-1009.
[9] 王媛媛, 郭延恩, 施国全, 韦俊霞, 夏顺仁. 基于声图像的海底地形边界提取算法[J]. 浙江大学学报(工学版), 2015, 49(2): 376-383.
[10] 杨钟亮, 唐智川, 陈育苗, 高增桂. 面向双侧训练的前臂外骨骼肌肉力-电关系识别模型[J]. 浙江大学学报(工学版), 2014, 48(12): 2152-2161.
[11] 程健, 项志宇, 于海滨, 刘济林. 城市复杂环境下基于三维激光雷达实时车辆检测[J]. 浙江大学学报(工学版), 2014, 48(12): 2101-2106.
[12] 杨冰,王小华,杨鑫,黄孝喜. 基于HOG金字塔人脸识别方法[J]. 浙江大学学报(工学版), 2014, 48(9): 1564-1569.
[13] 杨力,刘济林. 基于非监督特征学习的分叉道路检测算法[J]. 浙江大学学报(工学版), 2014, 48(9): 1558-1563.
[14] 胡祝华, 赵瑶池, 程杰仁, 彭金莲. 基于改进DRLSE的运动目标分割方法[J]. 浙江大学学报(工学版), 2014, 48(8): 1488-1495.
[15] 杨力, 刘俊毅, 王延长, 刘济林. 基于全景相机和全向激光雷达的致密三维重建[J]. 浙江大学学报(工学版), 2014, 48(8): 1481-1487.