交通工程 |
|
|
|
|
无信号交叉口处基于深度强化学习的智能网联车辆运动规划 |
张名芳1( ),马健1,赵娜乐2,王力1,刘颖1 |
1. 北方工业大学 城市道路智能交通控制技术北京市重点实验室,北京 100144 2. 交通运输部公路科学研究院 公路交通安全技术交通运输行业重点实验室,北京 100088 |
|
Intelligent connected vehicle motion planning at unsignalized intersections based on deep reinforcement learning |
Mingfang ZHANG1( ),Jian MA1,Nale ZHAO2,Li WANG1,Ying LIU1 |
1. Beijing Key Laboratory of Urban Road Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China 2. Key Laboratory of Road Safety Technology of Transport Industry, Research Institute of Highway, Ministry of Transport, Beijing 100088, China |
引用本文:
张名芳,马健,赵娜乐,王力,刘颖. 无信号交叉口处基于深度强化学习的智能网联车辆运动规划[J]. 浙江大学学报(工学版), 2024, 58(9): 1923-1934.
Mingfang ZHANG,Jian MA,Nale ZHAO,Li WANG,Ying LIU. Intelligent connected vehicle motion planning at unsignalized intersections based on deep reinforcement learning. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1923-1934.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.017
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1923
|
1 |
WANG C, XIE Y, HUANG H, et al A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling[J]. Accident Analysis and Prevention, 2021, 157: 106157
doi: 10.1016/j.aap.2021.106157
|
2 |
钱立军, 陈晨, 陈健, 等 基于Q学习模型的无信号交叉口离散车队控制[J]. 汽车工程, 2022, 44 (9): 1350- 1358 QIAN Lijun, CHEN Chen, CHEN Jian, et al Discrete platoon control at an unsignalized intersection based on Q-learning model[J]. Automotive Engineering, 2022, 44 (9): 1350- 1358
|
3 |
孙启鹏, 武智刚, 曹宁博, 等 基于风险预测的自动驾驶车辆行为决策模型[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1761- 1771 SUN Qipeng, WU Zhigang, CAO Ningbo, et al Decision-making model of autonomous vehicle behavior based on risk prediction[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (9): 1761- 1771
|
4 |
KESTING A, TREIBER M, HELBING D Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368 (1928): 4585- 4605
doi: 10.1098/rsta.2010.0084
|
5 |
陈秀锋, 高艳艳, 石英杰, 等 基于最优速度的弯道跟驰模型及其稳定性分析[J]. 重庆交通大学学报: 自然科学版, 2020, 39 (1): 126- 130 CHEN Xiufeng, GAO Yanyan, SHI Yingjie, et al Curve car following model based on optimal velocity and its stability analysis[J]. Journal of Chongqing Jiaotong University: Natural Science, 2020, 39 (1): 126- 130
|
6 |
孙辉辉, 胡春鹤, 张军国 移动机器人运动规划中的深度强化学习方法[J]. 控制与决策, 2021, 36 (6): 1281- 1292 SUN Huihui, HU Chunhe, ZHANG Junguo Deep reinforcement learning for motion planning of mobile robots[J]. Control and Decision, 2021, 36 (6): 1281- 1292
|
7 |
YANG Z, ZHANG Y, YU J, et al. End-to-end multi-modal multi-task vehicle control for self-driving cars with visual perceptions [C]// IEEE International Conference on Pattern Recognition . Beijing: IEEE, 2018: 2289−2294.
|
8 |
THU N T H, HAN D S. An end-to-end motion planner using sensor fusion for autonomous driving [C]// IEEE International Conference on Artificial Intelligence in Information and Communication . Bali: IEEE, 2023: 678−683.
|
9 |
ISELE D, RAHIMI R, COSGUN A, et al. Navigating occluded intersections with autonomous vehicles using deep reinforcement learning [C]// IEEE International Conference on Robotics and Automation . Brisbane: IEEE, 2018: 2034−2039.
|
10 |
GUNARATHNA U, KARUNASEKERA S, BOROVICA-GAJIC R, et al. Real-time intelligent autonomous intersection management using reinforcement learning [C]// IEEE Intelligent Vehicles Symposium . Aachen: IEEE, 2022: 135−144.
|
11 |
KIRAN B R, SOBH I, TALPAERT V, et al Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (6): 4909- 4926
|
12 |
KAMRAN D, LOPEZ C F, LAUER M, et al. Risk-aware high-level decisions for automated driving at occluded intersections with reinforcement learning [C]// IEEE Intelligent Vehicles Symposium . Las Vegas: IEEE, 2020: 1205−1212.
|
13 |
CHEN L, HU X, TANG B, et al Conditional DQN-based motion planning with fuzzy logic for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23 (4): 2966- 2977
|
14 |
高振海, 闫相同, 高菲, 等 仿驾驶员DDPG汽车纵向自动驾驶决策方法[J]. 汽车工程, 2021, 43 (12): 1737- 1744 GAO Zhenhai, YAN Xiangtong, GAO Fei, et al A driver-like decision-making method for longitudinal autonomous driving based on DDPG[J]. Automotive Engineering, 2021, 43 (12): 1737- 1744
|
15 |
邓小豪, 侯进, 谭光鸿, 等 基于强化学习的多目标车辆跟随决策算法[J]. 控制与决策, 2021, 36 (10): 2497- 2503 DENG Xiaohao, HOU Jin, TAN Guanghong, et al Multi-objective vehicle following decision algorithm based on reinforcement learning[J]. Control and Decision, 2021, 36 (10): 2497- 2503
|
16 |
LI G, LI S, LI S, et al Continuous decision-making for autonomous driving at intersections using deep deterministic policy gradient[J]. IET Intelligent Transport Systems, 2022, 16 (12): 1669- 1681
doi: 10.1049/itr2.12107
|
17 |
FUJIMOTO S, HOOF H, MEGER D. Addressing function approximation error in actor-critic methods [C]// International Conference on Machine Learning . Stockholm: PMLR, 2018: 1587−1596.
|
18 |
裴晓飞, 莫烁杰, 陈祯福, 等 基于 TD3 算法的人机混驾交通环境自动驾驶汽车换道研究[J]. 中国公路学报, 2021, 34 (11): 246- 254 PEI Xiaofei, MO Shuojie, CHEN Zhenfu, et al Lane changing of autonomous vehicle based on TD3 algorithm in human-machine hybrid driving environment[J]. China Journal of Highway and Transport, 2021, 34 (11): 246- 254
doi: 10.3969/j.issn.1001-7372.2021.11.020
|
19 |
吴翊恺, 胡启洲, 吴啸宇 车联网背景下的机动车辆轨迹预测模型[J]. 东南大学学报: 自然科学版, 2022, 52 (6): 1199- 1208 WU Yikai, HU Qizhou, WU Xiaoyu Vehicle trajectory prediction model in the context of internet of vehicles[J]. Journal of Southeast University: Natural Science Edition, 2022, 52 (6): 1199- 1208
|
20 |
AZADANI M N, BOUKERCHE A. Toward driver intention prediction for intelligent vehicles: a deep learning approach [C]// IEEE International Conference on Local Computer Networks . Edmonton: IEEE, 2021: 233−240.
|
21 |
王建强, 吴剑, 李洋 基于人-车-路协同的行车风险场概念, 原理及建模[J]. 中国公路学报, 2016, 29 (1): 105- 114 WANG Jianqiang, WU Jian, LI Yang Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016, 29 (1): 105- 114
doi: 10.3969/j.issn.1001-7372.2016.01.014
|
22 |
高振海, 闫相同, 高菲 基于逆向强化学习的纵向自动驾驶决策方法[J]. 汽车工程, 2022, 44 (7): 969- 975 GAO Zhenhai, YAN Xiangtong, GAO Fei Reinforcement learning a decision-making method for longitudinal autonomous driving based on inverse[J]. Automotive Engineering, 2022, 44 (7): 969- 975
|
23 |
刘启冉, 连静, 陈实, 等 考虑交互轨迹预测的自动驾驶运动规划算法[J]. 东北大学学报: 自然科学版, 2022, 43 (7): 930- 936 LIU Qiran, LIAN Jing, CHEN Shi, et al Motion planning algorithm of autonomous driving considering interactive trajectory prediction[J]. Journal of Northeastern University: Natural Science, 2022, 43 (7): 930- 936
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|