Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1882-1890    DOI: 10.3785/j.issn.1008-973X.2022.09.022
机械工程     
基于最小流量的液压机械臂冗余分解
丁孺琦1,2(),李望笃1,2,李刚1,2,*(),胡国良1,2
1. 华东交通大学 载运工具与装备教育部重点实验室,江西 南昌 330013
2. 华东交通大学 南昌市车辆智能装备与控制重点实验室,江西 南昌 330013
Redundancy resolution of hydraulic manipulators based on minimum-flow
Ru-qi DING1,2(),Wang-du LI1,2,Gang LI1,2,*(),Guo-liang HU1,2
1. Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, China
2. Nanchang Key Laboratory of Vehicle Intelligent Equipment and Control, East China Jiaotong University, Nanchang 330013, China
 全文: PDF(2370 KB)   HTML
摘要:

针对冗余液压机械臂预设轨迹下的能量优化问题,提出基于最小流量的液压机械臂冗余分解方法. 采用D-H参数法推导液压机械臂的运动学方程,构建末端速度与液压缸缸速的映射,建立系统能耗模型. 基于最小缸速范数法求解能量次优的冗余分解以部分降低能耗. 以液压系统流量最小为目标,通过优化加权雅可比矩阵求解能量最优的冗余分解. 为了提高计算效率,提出加权雅可比矩阵权值的动态优化方法,实现在线最优运动规划. 在研制的液压机械臂试验平台对冗余分解方法进行试验验证. 三关节平面运动试验结果表明,相比于现有梯度投影法和最小缸速范数法,所提最小流量优化方法相同末端轨迹的运动能耗降低超过5%.

关键词: 液压机械臂运动规划冗余分解动态权值节能    
Abstract:

A redundant resolution method of hydraulic manipulator with minimum-flow was proposed, aiming at the energy optimization problem of the redundant hydraulic manipulator with a preset trajectory. Firstly, the kinematic equations of the hydraulic manipulator were built by the Denavit-Hartenberg method, which maps the end-effector velocity to the hydraulic cylinder velocity, and establishes the energy consumption model of the system. Secondly, the energy suboptimal redundancy resolution was solved based on the minimum cylinder speed norm method to partially reduce the energy consumption. On this basis, taking the minimum flow of the hydraulic system as the objective, the redundant resolution of energy optimization was further solved by optimizing the weighted Jacobian matrix. Thirdly, to improve the computational efficiency, a dynamic optimization method of weighted Jacobian matrix weights was proposed, and the energy-optimal motion planning of the redundant hydraulic manipulators was captured online. Finally, the experimental verification was carried out on the developed hydraulic manipulator test platform. Experimental results of three joint planar motions showed that compared with the existing gradient projection method and the minimum cylinder speed norm method, the energy consumption of the same end-effector trajectory motion was reduced by more than 5%.

Key words: hydraulic manipulator    motion planning    redundancy resolution    dynamic-weight    energy saving
收稿日期: 2021-11-01 出版日期: 2022-09-28
CLC:  TH 137.9  
基金资助: 国家自然科学基金资助项目(52175050, U21A20124);江西省自然科学基金资助项目(20212ACB214004);中国博士后科学基金资助项目(2020M671349)
通讯作者: 李刚     E-mail: dingruqi@ecjtu.edu.cn;ligang0794@163.com
作者简介: 丁孺琦(1987—),男,副教授,从事机电液智能控制研究. orcid.org/0000-0002-1688-3421. E-mail: dingruqi@ecjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
丁孺琦
李望笃
李刚
胡国良

引用本文:

丁孺琦,李望笃,李刚,胡国良. 基于最小流量的液压机械臂冗余分解[J]. 浙江大学学报(工学版), 2022, 56(9): 1882-1890.

Ru-qi DING,Wang-du LI,Gang LI,Guo-liang HU. Redundancy resolution of hydraulic manipulators based on minimum-flow. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1882-1890.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.022        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1882

图 1  冗余分解中的关节限位函数曲线
图 2  最小流量优化的求解流程图
图 3  冗余液压机械臂算例的机构示意图
图 4  液压机械臂各关节几何关系
i L/m d/mm $ {\beta _{i1}}{\text{/(o)}} $ $ {\beta _{i2}}{\text{/(o)}} $
1 0.875 63 7.16 5.10
2 0.360 63 18.30 161.14
3 0.740 45 9.69 90
表 1  液压机械臂算例的结构参数
图 5  试验测试的末端三角形轨迹
图 6  三角形轨迹下不同冗余分解方法的规划角度对比
图 7  试验测试的末端椭圆轨迹
图 8  椭圆轨迹下不同冗余分解方法的规划角度对比
图 9  冗余液压机械臂试验台及其控制系统
图 10  不同轨迹下不同冗余分解方法的关节角度试验对比
图 11  不同轨迹下不同冗余分解方法的末端轨迹对比
图 12  不同轨迹下不同冗余分解方法的系统流量对比
算法 Ec,t Ec,e
理论 试验 理论 试验
MF 10.17 11.39 15.76 16.84
MAVN 11.17 12.00 16.65 17.74
GP 11.21 12.04 16.68 17.78
平均节能 7.2% 5.1% 7.4% 5.3%
表 2  不同轨迹理论计算与试验验证能耗对比
1 CHENG M, XU B, ZHANG J H, et al Valve-based compensation for controllability improvement of the energy-saving electrohydraulic flow matching system[J]. Journal of Zhejiang University-Science A, 2017, 18 (6): 430- 442
doi: 10.1631/jzus.A1600346
2 王翔宇, 张红娟, 杨敬, 等 非对称泵控装载机动臂特性研究[J]. 机械工程学报, 2021, 57 (12): 258- 266
WANG Xiang-yu, ZHANG Hong-juan, YANG Jing, et al Research on the characteristics of wheel loader boom driven by the asymmetric pump controlled system[J]. Journal of Mechanical Engineering, 2021, 57 (12): 258- 266
doi: 10.3901/JME.2021.12.258
3 CHENG M, LI L A, DING R Q, et al Real-time anti-saturation flow optimization algorithm of the redundant hydraulic manipulator[J]. Actuators, 2021, 10: 11
doi: 10.3390/act10010011
4 WAN J, YAO J F, ZHANG L A, et al A weighted gradient projection method for inverse kinematics of redundant manipulators considering multiple performance criteria[J]. Strojniški vestnik - Journal of Mechanical Engineering, 2018, 64 (7/8): 475- 487
5 胡奎, 张继文, 董云飞, 等 针对关节限位优化的7自由度机械臂逆运动学解法[J]. 清华大学学报:自然科学版, 2020, 60 (12): 1007- 1015
HU Kui, ZHANG Ji-wen, DONG Yun-fei, et al Inverse kinematic optimization for 7-DoF serial manipulators with joint limits optimization[J]. Journal of Tsinghua University: Science and Technology, 2020, 60 (12): 1007- 1015
6 潜龙昊, 胡士强, 杨永胜 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报:工学版, 2017, 51 (1): 75- 81
QIAN Long-hao, HU Shi-qiang, YANG Yong-sheng Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (1): 75- 81
7 ZHOU H B, ZHOU S, YU J, et al Trajectory optimization of pickup manipulator in obstacle environment based on improved artificial potential field method[J]. Applied Sciences, 2020, 10 (3): 935- 958
doi: 10.3390/app10030935
8 PENG X J, CHEN G Z, TANG Y J, et al Trajectory optimization of an electro-hydraulic robot[J]. Journal of Mechanical Science and Technology, 2020, 34 (10): 4281- 4294
doi: 10.1007/s12206-020-0919-4
9 徐帷, 卢山 基于Sarsa(λ)强化学习的空间机械臂路径规划研究 [J]. 宇航学报, 2019, 40 (4): 435- 443
XIU Wei, LU Shan Analysis of space manipulator route planning based on Sarsa(λ) reinforcement learning [J]. Journal of Astronautics, 2019, 40 (4): 435- 443
doi: 10.3873/j.issn.1000-1328.2019.04.008
10 YOKOSE Y Energy-saving trajectory planning for robots using the genetic algorithm with assistant chromosomes[J]. Artificial Life and Robotics, 2019, 25 (1): 89- 93
11 YIN S B, WEI J, WANG L H A machine learning based energy efficient trajectory planning approach for industrial robots[J]. Procedia CIRP, 2019, 81: 429- 434
doi: 10.1016/j.procir.2019.03.074
12 FERRENTINO E, CHIACCHIO P On the optimal resolution of inverse kinematics for redundant manipulators using a topological analysis[J]. Journal of Mechanisms and Robotics, 2020, 12 (3): 1- 14
13 GONG M D, LI X D, ZHANG L Analytical inverse kinematics and self-motion application for 7-DOF redundant manipulator[J]. IEEE Access, 2019, 7: 18662- 18674
doi: 10.1109/ACCESS.2019.2895741
14 HOANG P T, CHOI Y S, RHEE I, et al A new torque minimization method for heavy-duty redundant manipulators used in nuclear decommissioning tasks[J]. Intelligent Service Robotics, 2021, 14: 459- 469
doi: 10.1007/s11370-021-00369-4
15 TRINGALI A, COCUZZA S Globally optimal inverse kinematics method for a redundant robot manipulator with linear and nonlinear constraints[J]. Robotics, 2020, 9 (3): 61- 85
doi: 10.3390/robotics9030061
16 BEINER L, MATTILA J An improved pseudoinverse solution for redundant hydraulic manipulators[J]. Robotica, 1999, 17: 173- 179
17 NURMI J, MATTILA J Global energy-optimised redundancy resolution in hydraulic manipulators using dynamic programming[J]. Automation in Construction, 2017, 73: 120- 134
doi: 10.1016/j.autcon.2016.09.006
18 ZHENG S, DING R Q, ZHANG J H, et al Global energy efficiency improvement of redundant hydraulic manipulator with dynamic programming[J]. Energy Conversion and Management, 2021, 230: 113762
doi: 10.1016/j.enconman.2020.113762
19 CHAN T F, DUBEY R V A weighted least-norm solution based scheme for avoiding joint limits for redundant manipulators[J]. IEEE Transactions on Robotics and Automation, 1995, 11 (2): 286- 292
doi: 10.1109/70.370511
20 陆震. 冗余自由度机器人原理及应用[M]. 北京: 机械工业出版社, 2007.
21 刘志忠, 柳洪义, 罗忠, 等 基于可变加权矩阵的机器人雅可比矩阵规范化[J]. 机械工程学报, 2014, 50 (23): 29- 35
LIU Zhi-zhong, LIU Hong-yi, LUO Zhong, et al Jacobian matrix normalization based on variable weighting matrix[J]. Journal of Mechanical Engineering, 2014, 50 (23): 29- 35
doi: 10.3901/JME.2014.23.029
22 段晋军, 甘亚辉, 戴先中, 等 基于可操作度评价的冗余机器人逆解求解方法[J]. 华中科技大学学报:自然科学版, 2015, 43 (Suppl.1): 45- 48
DUAN Jin-jun, GAN Ya-hui, DAI Xian-zhong, et al Method of inverse kinematics solution for a redundant manipulator based on manipulability[J]. Journal of Huazhong University of science and Technology: Natural Science Edition, 2015, 43 (Suppl.1): 45- 48
[1] 王砚麟,王克义,王奎成,莫宗骏,王璐莹. 仿肌肉绳索驱动下肢康复机器人系统使用安全性评价[J]. 浙江大学学报(工学版), 2022, 56(1): 168-177.
[2] 阮方, 钱晓倩, 钱匡亮, 余亚超, 施水华. 夏热冬冷地区居住建筑外墙外保温的反节能现象[J]. 浙江大学学报(工学版), 2016, 50(12): 2343-2349.
[3] 阮方,钱晓倩,朱耀台,吴敏莉. 分室间歇用能对墙体内外保温节能效果的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 1-7.
[4] 徐兵,程敏,杨华勇,张军辉. 带旁路压力补偿的电液流量匹配系统[J]. 浙江大学学报(工学版), 2015, 49(9): 1762-1767.
[5] 欧阳金龙, 王春苑, 毛伟, 邓小燕. 利用EnIR和EvIR优化既有住宅节能改造方案[J]. 浙江大学学报(工学版), 2014, 48(8): 1391-1398.
[6] 诸利君, 陈芨熙, 王子龙, 暴志刚, 顾新建, 乐承毅. 面向全生命周期的合同能源管理支持系统[J]. J4, 2014, 48(2): 190-199.
[7] 唐黎明,周苏明,陈光明,陈琪. 带有冷变换器的双压缩机耦合冰箱[J]. J4, 2013, 47(11): 1983-1986.
[8] 刘伟, 徐兵, 杨华勇, 朱晓军. LUDV多路阀的挖掘机电液流量
匹配控制系统特性
[J]. J4, 2012, 46(8): 1360-1368.
[9] 王林涛, 龚国芳, 施虎. 基于拼装参数优化的盾构机管片拼装节能技术[J]. J4, 2012, 46(12): 2259-2267.
[10] 葛泉波, 刘双剑, 文成林. 基于分布式融合的传感器网络拓扑配置[J]. J4, 2011, 45(6): 969-976.
[11] 徐兵,曾定荣,葛耀峥,刘英杰. 负载口独立控制负载敏感系统模式切换特性[J]. J4, 2011, 45(5): 858-863.
[12] 黄明星, 叶云岳, 范承志. 复式永磁同步电机的工作特性分析与应用[J]. J4, 2010, 44(5): 1019-1024.
[13] 林潇, 管成, 潘双夏, 等. 并联式混合动力液压挖掘机动力源特性研究[J]. J4, 2010, 44(2): 353-357.
[14] 王纪武, 葛丹东. 节能目标下的城市设计方法[J]. J4, 2009, 43(8): 1538-1542.
[15] 闭治跃 王庆丰 唐建中. 疏浚泥浆管道输送系统的节能机理及控制策略[J]. J4, 2009, 43(2): 387-393.