Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1565-1576    DOI: 10.3785/j.issn.1008-973X.2024.08.004
机械工程、能源工程     
基于模型预测的四足机器人运动控制
秦海鹏1(),秦瑞2,施晓芬1,*(),朱小明2
1. 兰州城市学院 培黎机械工程学院,甘肃 兰州 730070
2. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064
Motion control of quadruped robot based on model prediction
Haipeng QIN1(),Rui QIN2,Xiaofen SHI1,*(),Xiaoming ZHU2
1. School of Baili Mechanical Engineering, Lanzhou City University, Lanzhou 730070, China
2. Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang’an University, Xi'an 710064, China
 全文: PDF(5131 KB)   HTML
摘要:

针对具有多自由度的四足机器人,结合中枢模式发生器(CPG)和模型预测控制机理(MPC),提出2种模型融合的神经控制方法. 该方法以模型预测原理为基础,通过模拟生物神经控制机制,构建腿足机器人行为运动神经控制架构. 该架构能够处理外部环境信息,自适应调节机身和腿部位置,实现机器人位置跟踪、全向运动和多种非典型步态. 实验结果表明,基于MPC-CPG控制架构的机器人可以快速响应并消除位置误差和角度误差,机身轨迹跟踪的位置误差始终保持在?0.1~0.1 m,姿态角误差保持在?0.05~0.05 rad. 在 MPC-CPG控制器的作用下,机器人不仅具有较高的轨迹跟踪精度,还表现出行为多样性,验证了所提出的MPC-CPG 控制器的有效性.

关键词: 四足机器人神经控制中枢模式发生器模型预测控制行为多样性    
Abstract:

A neural control method based on fusion of two models was proposed for a quadruped robot with multiple degrees of freedom, combining central pattern generator (CPG) and model predictive control (MPC). A behavioral movement neural control architecture for a legged robot was constructed based on model predictive theory by simulating biological neural mechanisms. This architecture can process the external environment information, adaptively adjust the position of the body and legs, and realize position tracking, omnidirectional movement and a variety of atypical gaits of quadruped robot. The experimental results show that the quadruped robot based on the MPC-CPG architecture can quickly respond and eliminate the position error and angle error, the position error in trajectory tracking is always kept at ?0.1~0.1 m, and the attitude angle error is kept at ?0.05~0.05 rad. The quadruped robot not only has high trajectory tracking accuracy, but also exhibits behavioral diversity with the MPC-CPG controller, which verifies the effectiveness of the proposed MPC-CPG controller.

Key words: quadruped robot    neural control    central pattern generator    model predictive control    behavior diversity
收稿日期: 2023-08-11 出版日期: 2024-07-23
CLC:  TP 242  
基金资助: 甘肃省教学成果培育项目.
通讯作者: 施晓芬     E-mail: qinhaipeng@chd.edu.cn;417205188@qq.com
作者简介: 秦海鹏(1996—),男,博士生,从事仿生机器人、腿足式机器人和智能系统的研究. orcid.org/0009-0000-5095-7423. E-mail:qinhaipeng@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
秦海鹏
秦瑞
施晓芬
朱小明

引用本文:

秦海鹏,秦瑞,施晓芬,朱小明. 基于模型预测的四足机器人运动控制[J]. 浙江大学学报(工学版), 2024, 58(8): 1565-1576.

Haipeng QIN,Rui QIN,Xiaofen SHI,Xiaoming ZHU. Motion control of quadruped robot based on model prediction. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1565-1576.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.004        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1565

图 1  全肘式四足机器人样机
参数数值参数数值
髋部长度α1/mm58机身宽度WB/mm420
大腿长度α2/mm190髋部距离B1/mm245
小腿长度α3/mm330机身宽度B2/mm200
机身高度H/mm350机身质量m/kg30.32
机身长度LB/mm590
表 1  四足机器人的结构参数
图 2  四足机器人的运动学模型
图 3  单刚体模型
图 4  基于 CPG 的运动控制系统
图 5  落足点的示意图
图 6  适应性落足点
图 7  足端轨迹规划的示意图
图 8  基于 MPC 和 CPG 的神经控制器
图 9  期望的机器人位置曲线
图 10  基于PD的位置误差曲线
图 11  基于PD+MPC的位置误差曲线
图 12  线速度的误差曲线
图 13  姿态角的误差曲线
图 14  四足机器人的硬件平台
图 15  质心位置跟踪曲线
图 16  线速度曲线
图 17  姿态角曲线
图 18  全向运动的线速度曲线
图 19  全向运动的位置曲线
图 20  全向运动的姿态角速度曲线
图 21  全向运动的姿态角曲线
图 22  神经控制器的输出
图 23  多种步态的状态参数值
图 24  多种步态的 COT 参数值
1 PARK H W, WENSING P M, KIM S Jumping over obstacles with MIT Cheetah 2[J]. Robotics and Autonomous Systems, 2021, 136: 103703
doi: 10.1016/j.robot.2020.103703
2 DE A, KODITSCHEK D E Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting[J]. The International Journal of Robotics Research, 2018, 37 (7): 743- 778
doi: 10.1177/0278364918779874
3 PARK H W, PARK S, KIM S. Variable-speed quadrupedal bounding using impulse planning: untethered high-speed 3d running of MIT Cheetah 2 [C]// IEEE International Conference on Robotics and Automation . Seattle: IEEE, 2015: 5163-5170.
4 SEMINI C, TSAGARAKIS N G, GUGLIELMINO E, et al Design of HyQ: a hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225 (6): 831- 849
doi: 10.1177/0959651811402275
5 HUTTERr M, GEHRING C, JUD D, et al. Anymal: a highly mobile and dynamic quadrupedal robot [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Daejeon: IEEE, 2016: 38-44.
6 RAIBERT M H, TEIIO E R Legged robots that balance[J]. IEEE Expert, 1986, 4 (1): 89
7 CAMURRI M, RAMEZANI M, NONILI S, et al Pronto: a multi-sensor state estimator for legged robots in real-world scenarios[J]. Frontiers in Robotics and AI, 2020, 7: 68
doi: 10.3389/frobt.2020.00068
8 PONTON B, KHADIV M, MEDURI A, et al Efficient multicontact pattern generation with sequential convex approximations of the centroidal dynamics[J]. IEEE Transactions on Robotics, 2021, 37 (5): 1661- 1679
doi: 10.1109/TRO.2020.3048125
9 BJELONIC M, GRANDIA R, HARLEY O, et al. Whole-body mpc and online gait sequence generation for wheeled-legged robots [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Prague: IEEE, 2021: 8388-8395.
10 VILLARREAL O, BARASUOL V, WENSING P M, et al. MPC-based controller with terrain insight for dynamic legged locomotion [C]// IEEE International Conference on Robotics and Automation . Paris: IEEE, 2020: 2436-2442.
11 朱雅光, 刘春潮, 张亮 基于虚拟运动神经网络的六足机器人行为控制[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1107- 1118
ZHU Yaguang, LIU Chunchao, ZHANG Liang Behavior control of hexapod robot based on virtual motoneuron network[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1107- 1118
12 YANG C, HUANG D, HE W, et al Neural control of robot manipulators with trajectory tracking constraints and input saturation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (9): 4231- 4242
13 MIKI T, LEE J, HWANGBO J, et al Learning robust perceptive locomotion for quadrupedal robots in the wild[J]. Science Robotics, 2022, 7 (62): 2822
doi: 10.1126/scirobotics.abk2822
14 JIN B, YE S, SU J, et al Unknown payload adaptive control for quadruped locomotion with proprioceptive linear legs[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27 (4): 1891- 1899
doi: 10.1109/TMECH.2022.3170548
15 BAINES R, PATIBALLA S K, BOOTH J, et al Multi-environment robotic transitions through adaptive morphogenesis[J]. Nature, 2022, 610 (7931): 283- 289
doi: 10.1038/s41586-022-05188-w
16 SUZUKI S, KANO T, IJSPEERT A J, et al Sprawling quadruped robot driven by decentralized control with cross-coupled sensory feedback between legs and trunk[J]. Frontiers in Neurorobotics, 2021, 14: 116
17 SAPUTRA A A, BOTZHEIM J, IJSPEERT A J, et al Combining reflexes and external sensory information in a neuromusculoskeletal model to control a quadruped robot[J]. IEEE Transactions on Cybernetics, 2021, 52 (8): 7981- 7994
18 RIGHETTI L, IJSPEERT A J. Pattern generators with sensory feedback for the control of quadruped locomotion [C]// IEEE International Conference on Robotics and Automation . Pasadena: IEEE, 2008: 819-824.
19 MIRLETZ B T, BHANDAL P, ADAMS R D, et al Goal-directed CPG-based control for tensegrity spines with many degrees of freedom traversing irregular terrain[J]. Soft Robotics, 2015, 2 (4): 165- 176
doi: 10.1089/soro.2015.0012
20 BING Z, CHENG L, CHEN G, et al Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot[J]. Bioinspiration and Biomimetics, 2017, 12 (3): 035001
doi: 10.1088/1748-3190/aa644c
21 SANTOS C P, ALVES N, MORENO J C Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2017, 85: 47- 70
doi: 10.1007/s10846-016-0407-3
22 MEDEIROS V S, JELAVIC E, BJELONIC M, et al Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain[J]. IEEE Robotics and Automation Letters, 2020, 5 (3): 4172- 4179
doi: 10.1109/LRA.2020.2990720
[1] 章军辉,郭晓满,王静贤,付宗杰,刘禹希. 基于非合作博弈的车道保持共享控制[J]. 浙江大学学报(工学版), 2024, 58(5): 1001-1008.
[2] 林俊光,周雅敏,冯彦皓,马聪,吴凡,郑梦莲,俞自涛. 基于热湿负荷与自适应预测时域微网优化调度[J]. 浙江大学学报(工学版), 2023, 57(9): 1832-1842.
[3] 熊伟亮,何德峰,王秀丽,周丹. 基于高斯回归学习的场景优化鲁棒预测控制[J]. 浙江大学学报(工学版), 2023, 57(4): 693-701.
[4] 朱雅光,刘春潮,张亮. 基于虚拟运动神经网络的六足机器人行为控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1107-1118.
[5] 刘明敏,曲道奎,徐方,邹风山,贾凯,宋吉来. 基于运动发散分量的四足机器人步态规划[J]. 浙江大学学报(工学版), 2021, 55(2): 244-250.
[6] 江冬冬,李道飞,俞小莉. 基于驾驶员需求转矩预测的模型预测控制能量管理[J]. 浙江大学学报(工学版), 2020, 54(7): 1325-1334.
[7] 王扬威,范增,赵东标,刘凯. 基于Hopf振荡器的仿生机器魟鱼胸鳍波形控制算法[J]. 浙江大学学报(工学版), 2019, 53(7): 1354-1362.
[8] 丁加涛,何杰,李林芷,肖晓晖. 基于模型预测控制的仿人机器人实时步态优化[J]. 浙江大学学报(工学版), 2019, 53(10): 1843-1851.
[9] 李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274.
[10] 杨庆芳, 赵小辉, 郑黎黎, 张伟. 基于模型预测控制的环形交叉口信号配时方法[J]. 浙江大学学报(工学版), 2018, 52(1): 117-124.
[11] 初亮, 李天骄, 孙成伟. 面向再生制动优化的电动车自适应巡航控制策略[J]. 浙江大学学报(工学版), 2017, 51(8): 1596-1602.
[12] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.
[13] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[14] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[15] 李丽娟, 熊路, 刘君, 徐欧官. 基于AP-LSSVM的多模型预测控制[J]. J4, 2013, 47(10): 1741-1746.