机械工程、能源工程 |
|
|
|
|
基于模型预测的四足机器人运动控制 |
秦海鹏1( ),秦瑞2,施晓芬1,*( ),朱小明2 |
1. 兰州城市学院 培黎机械工程学院,甘肃 兰州 730070 2. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064 |
|
Motion control of quadruped robot based on model prediction |
Haipeng QIN1( ),Rui QIN2,Xiaofen SHI1,*( ),Xiaoming ZHU2 |
1. School of Baili Mechanical Engineering, Lanzhou City University, Lanzhou 730070, China 2. Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang’an University, Xi'an 710064, China |
引用本文:
秦海鹏,秦瑞,施晓芬,朱小明. 基于模型预测的四足机器人运动控制[J]. 浙江大学学报(工学版), 2024, 58(8): 1565-1576.
Haipeng QIN,Rui QIN,Xiaofen SHI,Xiaoming ZHU. Motion control of quadruped robot based on model prediction. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1565-1576.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.004
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1565
|
1 |
PARK H W, WENSING P M, KIM S Jumping over obstacles with MIT Cheetah 2[J]. Robotics and Autonomous Systems, 2021, 136: 103703
doi: 10.1016/j.robot.2020.103703
|
2 |
DE A, KODITSCHEK D E Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting[J]. The International Journal of Robotics Research, 2018, 37 (7): 743- 778
doi: 10.1177/0278364918779874
|
3 |
PARK H W, PARK S, KIM S. Variable-speed quadrupedal bounding using impulse planning: untethered high-speed 3d running of MIT Cheetah 2 [C]// IEEE International Conference on Robotics and Automation . Seattle: IEEE, 2015: 5163-5170.
|
4 |
SEMINI C, TSAGARAKIS N G, GUGLIELMINO E, et al Design of HyQ: a hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225 (6): 831- 849
doi: 10.1177/0959651811402275
|
5 |
HUTTERr M, GEHRING C, JUD D, et al. Anymal: a highly mobile and dynamic quadrupedal robot [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Daejeon: IEEE, 2016: 38-44.
|
6 |
RAIBERT M H, TEIIO E R Legged robots that balance[J]. IEEE Expert, 1986, 4 (1): 89
|
7 |
CAMURRI M, RAMEZANI M, NONILI S, et al Pronto: a multi-sensor state estimator for legged robots in real-world scenarios[J]. Frontiers in Robotics and AI, 2020, 7: 68
doi: 10.3389/frobt.2020.00068
|
8 |
PONTON B, KHADIV M, MEDURI A, et al Efficient multicontact pattern generation with sequential convex approximations of the centroidal dynamics[J]. IEEE Transactions on Robotics, 2021, 37 (5): 1661- 1679
doi: 10.1109/TRO.2020.3048125
|
9 |
BJELONIC M, GRANDIA R, HARLEY O, et al. Whole-body mpc and online gait sequence generation for wheeled-legged robots [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Prague: IEEE, 2021: 8388-8395.
|
10 |
VILLARREAL O, BARASUOL V, WENSING P M, et al. MPC-based controller with terrain insight for dynamic legged locomotion [C]// IEEE International Conference on Robotics and Automation . Paris: IEEE, 2020: 2436-2442.
|
11 |
朱雅光, 刘春潮, 张亮 基于虚拟运动神经网络的六足机器人行为控制[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1107- 1118 ZHU Yaguang, LIU Chunchao, ZHANG Liang Behavior control of hexapod robot based on virtual motoneuron network[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1107- 1118
|
12 |
YANG C, HUANG D, HE W, et al Neural control of robot manipulators with trajectory tracking constraints and input saturation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (9): 4231- 4242
|
13 |
MIKI T, LEE J, HWANGBO J, et al Learning robust perceptive locomotion for quadrupedal robots in the wild[J]. Science Robotics, 2022, 7 (62): 2822
doi: 10.1126/scirobotics.abk2822
|
14 |
JIN B, YE S, SU J, et al Unknown payload adaptive control for quadruped locomotion with proprioceptive linear legs[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27 (4): 1891- 1899
doi: 10.1109/TMECH.2022.3170548
|
15 |
BAINES R, PATIBALLA S K, BOOTH J, et al Multi-environment robotic transitions through adaptive morphogenesis[J]. Nature, 2022, 610 (7931): 283- 289
doi: 10.1038/s41586-022-05188-w
|
16 |
SUZUKI S, KANO T, IJSPEERT A J, et al Sprawling quadruped robot driven by decentralized control with cross-coupled sensory feedback between legs and trunk[J]. Frontiers in Neurorobotics, 2021, 14: 116
|
17 |
SAPUTRA A A, BOTZHEIM J, IJSPEERT A J, et al Combining reflexes and external sensory information in a neuromusculoskeletal model to control a quadruped robot[J]. IEEE Transactions on Cybernetics, 2021, 52 (8): 7981- 7994
|
18 |
RIGHETTI L, IJSPEERT A J. Pattern generators with sensory feedback for the control of quadruped locomotion [C]// IEEE International Conference on Robotics and Automation . Pasadena: IEEE, 2008: 819-824.
|
19 |
MIRLETZ B T, BHANDAL P, ADAMS R D, et al Goal-directed CPG-based control for tensegrity spines with many degrees of freedom traversing irregular terrain[J]. Soft Robotics, 2015, 2 (4): 165- 176
doi: 10.1089/soro.2015.0012
|
20 |
BING Z, CHENG L, CHEN G, et al Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot[J]. Bioinspiration and Biomimetics, 2017, 12 (3): 035001
doi: 10.1088/1748-3190/aa644c
|
21 |
SANTOS C P, ALVES N, MORENO J C Biped locomotion control through a biomimetic CPG-based controller[J]. Journal of Intelligent and Robotic Systems, 2017, 85: 47- 70
doi: 10.1007/s10846-016-0407-3
|
22 |
MEDEIROS V S, JELAVIC E, BJELONIC M, et al Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain[J]. IEEE Robotics and Automation Letters, 2020, 5 (3): 4172- 4179
doi: 10.1109/LRA.2020.2990720
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|