机械工程 |
|
|
|
|
基于运动发散分量的四足机器人步态规划 |
刘明敏1,2,3(),曲道奎1,2,4,徐方1,2,4,*(),邹风山1,2,4,贾凯1,2,4,宋吉来4 |
1. 中国科学院 沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳 110016 2. 中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110016 3. 中国科学院大学,北京 100049 4. 沈阳新松机器人自动化股份有限公司,辽宁 沈阳 110168 |
|
Gait planning of quadruped robot based on divergence component of motion |
Ming-min LIU1,2,3(),Dao-kui QU1,2,4,Fang XU1,2,4,*(),Feng-shan ZOU1,2,4,Kai JIA1,2,4,Ji-lai SONG4 |
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China 3. University of Chinese Academy of Sciences, Beijing 100049, China 4. Shenyang SIASUN Robot and Automation Co. Ltd, Shenyang 110168, China |
引用本文:
刘明敏,曲道奎,徐方,邹风山,贾凯,宋吉来. 基于运动发散分量的四足机器人步态规划[J]. 浙江大学学报(工学版), 2021, 55(2): 244-250.
Ming-min LIU,Dao-kui QU,Fang XU,Feng-shan ZOU,Kai JIA,Ji-lai SONG. Gait planning of quadruped robot based on divergence component of motion. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 244-250.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.004
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I2/244
|
1 |
JOE H M, OH J H Balance recovery through model predictive control based on capture point dynamics for biped walking robot[J]. Robotics and Autonomous Systems, 2018, 105: 1- 10
doi: 10.1016/j.robot.2018.03.004
|
2 |
KAJITA S, KANEHIRO F, KANEKO K, et al. The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui: IEEE, 2001, 1: 239-246.
|
3 |
易江, 朱秋国, 吴俊, 等 基于最优控制的仿人机器人行走振动抑制[J]. 机器人, 2018, 40 (2): 129- 135 YI Jiang, ZHU Qiu-guo, WU Jun, et al Walking vibration suppression for humanoid robot based on optimal control[J]. Robot, 2018, 40 (2): 129- 135
|
4 |
KAJITA S, KANEHIRO F, KANEKO K, et al. Biped walking pattern generation by using preview control of zero-moment point [C]// IEEE International Conference on Robotics and Automation. Taipei: IEEE, 2003, 2: 1620-1626.
|
5 |
WIEBER P B. Trajectory free linear model predictive control for stable walking in the presence of strong perturbations [C]// IEEE-RAS International Conference on Humanoid Robots. Genova: IEEE, 2006: 137-142.
|
6 |
FENG S, WHITMAN E, XINJILEFU X, et al Optimization-based full body control for the DARPA robotics challenge[J]. Journal of Field Robotics, 2015, 32 (2): 293- 312
doi: 10.1002/rob.21559
|
7 |
KAMIOKA T, KANEKO H, TAKENAKA T, et al. Simultaneous optimization of ZMP and footsteps based on the analytical solution of divergent component of motion [C]// IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 1763-1770.
|
8 |
HOF A L The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking[J]. Human Movement Science, 2008, 27 (1): 112- 125
doi: 10.1016/j.humov.2007.08.003
|
9 |
PRATT J, CARFF J, DRAKUNOV S, et al. Capture point: a step toward humanoid push recovery [C]// IEEE-RAS International Conference on Humanoid Robots. Genova: IEEE, 2006: 200-207.
|
10 |
LANARI L, HUTCHINSON S, MARCHIONNI L. Boundedness issues in planning of locomotion trajectories for biped robots [C]// IEEE-RAS International Conference on Humanoid Robots. Madrid: IEEE, 2014: 951-958.
|
11 |
WANG H, ZHAO M. A robust biped gait controller using step timing optimization with fixed footprint constraints [C]// IEEE International Conference on Robotics and Biomimetics. Macau: IEEE, 2017: 1787-1792.
|
12 |
KHADIV M, KLEFF S, HERZOG A, et al. Stepping stabilization using a combination of dcm tracking and step adjustment [C]// International Conference on Robotics and Mechatronics. Tehran: IEEE, 2016: 130-135.
|
13 |
ENGLSBERGER J, OTT C. Integration of vertical com motion and angular momentum in an extended capture point tracking controller for bipedal walking [C]// IEEE-RAS International Conference on Humanoid Robots. Osaka: IEEE, 2012: 183-189.
|
14 |
VUKOBRATOVI M, BOROVAC B Zero-moment point: thirty five years of its life[J]. International Journal of Humanoid Robotics, 2004, 1 (1): 157- 173
doi: 10.1142/S0219843604000083
|
15 |
BELLICOSO C D, JENELTEN F, GEHRING C, et al Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 2261- 2268
doi: 10.1109/LRA.2018.2794620
|
16 |
MISTRY M, BUCHLI J, SCHAAL S. Inverse dynamics control of floating base systems using orthogonal decomposition [C]// IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 3406-3412.
|
17 |
陈腾, 李贻斌, 荣学文 四足机器人动步态下实时足底力优化方法的设计与验证[J]. 机器人, 2019, 41 (3): 307- 316 CHEN Teng, LI Yi-bin, RONG Xue-wen Design and verification of real-time plantar force optimization for quadruped robots in dynamic gait[J]. Robot, 2019, 41 (3): 307- 316
|
18 |
张国腾, 荣学文, 李贻斌, 等 基于虚拟模型的四足机器人对角小跑步态控制方法[J]. 机器人, 2016, 38 (1): 64- 74 ZHANG Guo-teng, RONG Xue-wen, LI Yi-bin, et al Control of the quadrupedal trotting based on virtual model[J]. Robotics, 2016, 38 (1): 64- 74
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|