Please wait a minute...
浙江大学学报(工学版)
机械与电气工程     
泵控非对称液压缸系统高精度位置控制方法
王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良
上海交通大学 机械与动力工程学院,上海 200240
Precision position control of pump controlled asymmetric cylinder
WANG Xuan, TAO Jian feng, ZHANG Feng rong, WU Ya jin, LIU Cheng liang
School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
 全文: PDF(1090 KB)   HTML
摘要:
针对已开发的单向比例泵控非对称液压缸系统实验平台,为了实现该类系统的无超调位置控制,通过分析系统的工作原理及特性,基于系统的流量连续性方程和力平衡方程,提出采用带约束的三阶状态空间模型来描述单向比例泵控非对称液压缸系统的方法.基于模型预测控制理论和QPhild二次优化算法,设计适用于该模型的模型预测控制器来保证系统的无超调位置输出.实验结果表明,运用模型预测方法能够避免换向阀切换引入的系统非线性,有效地解决泵控非对称液压缸系统的超调问题,实现多约束条件下的高精度位置控制.
Abstract:
 A three order state space model with constraints was proposed to describe the system based on the flow continuity equation and the force balance equation after analyzing the operating principle and characteristics of the system in order to realize the non overshooting position control of unidirectional proportional pump controlled asymmetric cylinder system on the designed platform. A design of model predictive controller applicable to this model was proposed based on model predictive control theory and QPhild quadratic optimization algorithm in order to guarantee its non overshooting output. Experimental results indicated that the proposed method successfully resolved the overshooting problem without introducing nonlinear characteristics caused by switching the valve. Then the aim of high precision position control under multiple constraints was realized.
出版日期: 2016-04-01
:     
基金资助:

国家自然科学基金资助项目(51375297,51275288);上海市优秀学术带头人计划资助项目(14XD1402000);国家“863”高技术研究发展计划资助项目(2012AA041803);长安大学高速公路施工机械陕西省重点实验室开放基金资助项目(2014G1502044).

通讯作者: 陶建峰,男,副教授.ORCID: 0000 0001 6098 9779.     E-mail: jftao@sjtu.edu.cn
作者简介: 王玄(1992—),男,硕士生,从事电液伺服控制的研究.ORCID: 0000 0002 0722 2234. E-mail: wxasqy123@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.04.001.

WANG Xuan, TAO Jian feng, ZHANG Feng rong, WU Ya jin, LIU Cheng liang. Precision position control of pump controlled asymmetric cylinder. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.04.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.04.001        http://www.zjujournals.com/eng/CN/Y2016/V50/I4/597

[1] TAKAKU K, HIRAIDE H, OBA K. Application of the “ASR series” ac servo motor driven hydraulic pump to injection molding machines [C]∥Proceedings of the JFPS International Symposium on Fluid Power. Japan: The Japan Fluid Power System Society, 2008: 127-130.
[2]  IMAMURA T, SAWADA Y, ICHIKAWA M, et al. Energy saving hybrid hydraulic system comprising highly efficient IPM motor and inverter, for injection molding and manufacturing machine [C]∥Proceedings of the JFPS International Symposium on Fluid Power. Japan: The Japan Fluid Power System Society, 2008: 117-120.
[3] CHIANG M H. A novel pitch control system for a wind turbine driven by a variable speed pump controlledhydraulic servo system [J]. Mechatronics, 2011, 21(4): 753-761.
[4]  RAHMFELD R. Development and control of energy saving hydraulic servo driven for mobile machine [D]. Hamburg: TUHH, 2002.
[5]  HELDUSER S. Electric hydrostatic drive: an innovative energy saving power and motion control system [C]∥Proceedings of the Institution of Mechanical Engineers. Hangzhou:[s.n.], 1999: 427-437.
[6]  KAZMEIER B. Electro hydrostatic low power linear drive system performance and controls to minimize power consumption [C]∥ Proceedings of the 3rd International Symposium on Fluid Power Transmission and Control. Beijing: International Academic, 1997: 113-119.
[7]  XU M, JIN B, YU Y, et al. Using artificial neural networks for energy regulation based variable speed electrohydraulic drive [J]. Chinese Journal of Mechanical Engineering, 2010, 23(3): 327-335.
[8] TAO J, WANG X, YANG L, et al. Nonovershooting position control for unidirectional proportional pump controlled asymmetric cylinder with proportional controller [C]∥ 2015 International Conference on Fluid Power and Mechatronics (FPM). China: IEEE, 2015: 866-872.
[9]  李贵闪. 伺服驱动液压机浅析[J]. 锻压装备与制造技术, 2011, 15(6): 17-19.
LI Gui shan. Analysis of servo driven press [J]. China Metal Forming Equipment and Manufacturing Technology, 2011, 15(6): 17-19.
[10] 权龙. 泵控缸电液技术研究现状, 存在问题及创新解决方案[J]. 机械工程学报, 2008, 44(11): 87-92.
QUAN Long. Current state, problem and the innovative solution of electro hydraulic technology of pump controlled cylinder [J]. Journal of Mechanical Engineering, 2008, 44(11): 87-92.
[11]  PERRON M, DE LAFONTAINE J, DESJARDINS Y. Sliding mode control of a servomotor pump in a position control application [C]∥ Canadian Conference on Electrical and Computer Engineering. Canada: IEEE, 2005: 1287-1291.
[12]  ZHENG J, ZHAO S, WEI S. Application of self tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press [J]. Control Engineering Practice, 2009, 17(12): 1398-1404.
[13]  彭永刚,韦巍. 伺服电动机直接驱动定量泵液压系统在精密注塑中的应用及控制策略[J]. 机械工程学报,2011,47(2): 173-179.
PENG Yong gang, WEI Wei. Application and control strategy of servo motor driven constant pump hydraulic system in precision injection molding [J]. Journal of Mechanical Engineering, 2011, 47(2): 173-179.
[14]  PENG Y, WANG J, WEI W. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neuro dynamic optimization [J]. Journal of Zhejiang University: Science C, 2014, 15(2): 139-146.
[15] 黄昆, 俞凡. 电磁式主动悬架模型预测控制器设计[J]. 上海交通大学学报,2011, 44(11): 1619-1624.
HUANG Kun, YU Fan. Model predictive controller design for electromagnetic active suspension [J]. Journal of Shanghai Jioatong University, 2011, 44 (11): 1619-1624.
[16] WANG L. Model predictive control system design and implementation using MATLAB [M]. Germany: Springer, 2009: 11-88.
[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[14] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[15] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.