机械工程、能源工程 |
|
|
|
|
基于同步动态优化的移动机器人最优速度规划 |
樊志伟1,2,3( ),贾凯1,2,4,*( ),张雷1,2,4,邹风山1,2,4,杜振军4,刘明敏4 |
1. 中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳 110016 2. 中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110016 3. 中国科学院大学,北京 100049 4. 沈阳新松机器人自动化股份有限公司,辽宁 沈阳 110168 |
|
Optimal velocity planning for mobile robot based on simultaneous dynamic optimization |
Zhiwei FAN1,2,3( ),Kai JIA1,2,4,*( ),Lei ZHANG1,2,4,Fengshan ZOU1,2,4,Zhenjun DU4,Mingmin LIU4 |
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China 3. University of Chinese Academy of Sciences, Beijing 100049, China 4. Shenyang SIASUN Robot and Automation Limited Company, Shenyang 110168, China |
引用本文:
樊志伟,贾凯,张雷,邹风山,杜振军,刘明敏. 基于同步动态优化的移动机器人最优速度规划[J]. 浙江大学学报(工学版), 2024, 58(8): 1556-1564.
Zhiwei FAN,Kai JIA,Lei ZHANG,Fengshan ZOU,Zhenjun DU,Mingmin LIU. Optimal velocity planning for mobile robot based on simultaneous dynamic optimization. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1556-1564.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.003
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1556
|
1 |
KIM T, LIM S, SHIN G, et al An open-source low-cost mobile robot system with an RGB-D camera and efficient real-time navigation algorithm[J]. IEEE Access, 2022, 10: 127871- 127881
doi: 10.1109/ACCESS.2022.3226784
|
2 |
GRAF F, LINDERMAYR J, ODABASI C, et al Toward holistic scene understanding: a transfer of human scene perception to mobile robots[J]. IEEE Robotics and Automation Magazine, 2022, 29 (4): 36- 49
doi: 10.1109/MRA.2022.3210587
|
3 |
MORALES L, HERRERA M, CAMACHO O, et al LAMDA control approaches applied to trajectory tracking for mobile robots[J]. IEEE Access, 2021, 9: 37179- 37195
doi: 10.1109/ACCESS.2021.3062202
|
4 |
CHRISTOPHER M, BIRGIT G, KAI P. World robotics 2022: service robots [EB/OL]. (2022-10-26)[2023-06-25]. https://www.roboticstomorrow.com/story/2022/10/sales-of-robots-for-the-service-sector-grew-by-37-worldwide/19664/.
|
5 |
PHAM H, PHAM Q C A new approach to time-optimal path parameterization based on reachability analysis[J]. IEEE Transactions on Robotics, 2017, 34 (3): 645- 659
|
6 |
LI B, OUYANG Y, LI L, et al Autonomous driving on curvy roads without reliance on Frenet frame: a Cartesian-based trajectory planning method[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 15729- 15741
doi: 10.1109/TITS.2022.3145389
|
7 |
HOANG V B, NGUYEN V H, NGO T D, et al Socially aware robot navigation framework: where and how to approach people in dynamic social environments[J]. IEEE Transactions on Automation Science and Engineering, 2022, 20 (2): 1322- 1336
|
8 |
LIN Z, TAGUCHI R. Improved dynamic window approach using the jerk model [C]// 22nd International Conference on Control, Automation and Systems . Busan: IEEE, 2022: 1193–1198.
|
9 |
RAINERI M, BIANCO C G L. Jerk limited planner for real-time applications requiring variable velocity bounds [C]// IEEE 15th International Conference on Automation Science and Engineering . Vancouver: IEEE, 2019: 1611–1617.
|
10 |
KIM J Trajectory generation of a two-wheeled mobile robot in an uncertain environment[J]. IEEE Transactions on Industrial Electronics, 2019, 67 (7): 5586- 5594
|
11 |
王德军, 张凯然, 徐鹏, 等 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报: 工学版, 2023, 53 (3): 643- 652 WANG Dejun, ZHANG Kairan, XU Peng, et al Speed planning and control under complex road conditions based on vehicle executive capability[J]. Journal of Jilin University: Engineering and Technology Edition, 2023, 53 (3): 643- 652
|
12 |
SHIMIZU Y, HORIBE T, WATANABE F, et al. Jerk constrained velocity planning for an autonomous vehicle: linear programming approach [C]// International Conference on Robotics and Automation . Philadelphia: IEEE, 2022: 5814–5820.
|
13 |
ZHOU J, HE R, WANG Y, et al Autonomous driving trajectory optimization with dual-loop iterative anchoring path smoothing and piecewise-jerk speed optimization[J]. IEEE Robotics and Automation Letters, 2020, 6 (2): 439- 446
|
14 |
ZDESAR A, SKRJANC I Optimum velocity profile of multiple Bernstein-Bézier curves subject to constraints for mobile robots[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9 (5): 1- 23
|
15 |
ZHANG B, HE J, PEI D. Global trajectory optimization of mobile robot based on Minimum Snap [C]// IEEE 6th Information Technology and Mechatronics Engineering Conference . Chongqing: IEEE, 2022: 36–41.
|
16 |
陈峥, 张玉果, 沈世全, 等 城市郊区道路跟车条件下智能网联汽车速度规划[J]. 中国公路学报, 2023, 36 (6): 298- 310 CHEN Zheng, ZHANG Yuguo, SHEN Shiquan, et al Speed planning of intelligent and connected vehicle under following conditions of suburban road scenarios[J]. China Journal of Highway and Transport, 2023, 36 (6): 298- 310
|
17 |
BIEGLER L T An overview of simultaneous strategies for dynamic optimization[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46 (11): 1043- 1053
doi: 10.1016/j.cep.2006.06.021
|
18 |
LI B, SHAO Z Simultaneous dynamic optimization: a trajectory planning method for nonholonomic car-like robots[J]. Advances in Engineering Software, 2015, 87: 30- 42
doi: 10.1016/j.advengsoft.2015.04.011
|
19 |
LI B, SHAO Z A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles[J]. Knowledge-Based Systems, 2015, 86: 11- 20
doi: 10.1016/j.knosys.2015.04.016
|
20 |
ANDERSSON J A E, GILLIS J, HORN G, et al CasADi: a software framework for nonlinear optimization and optimal control[J]. Mathematical Programming Computation, 2019, 11: 1- 36
doi: 10.1007/s12532-018-0139-4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|