Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2320-2329    DOI: 10.3785/j.issn.1008-973X.2024.11.013
机械与环境工程     
磁场辅助纳米流体气雾渗透沉积特性及其加工性能
吕涛1,2(),于爱兵2,许雪峰3,*(),马敏海1,赵丛林4
1. 宁波职业技术学院 中国轻工业塑料模具工程技术研究中心,浙江 宁波 315800
2. 宁波大学 机械工程与力学学院,浙江 宁波 315211
3. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州 310023
4. 兰州理工大学 机电工程学院,甘肃 兰州 730050
Penetration and deposition characteristics and machining performance of magnetic field assisted nanofluid spray lubrication
Tao LV1,2(),Aibing YU2,Xuefeng XU3,*(),Minhai MA1,Conglin ZHAO4
1. China Light Industry Plastic Mold Engineering Technology Research Center, Ningbo Polytechnic, Ningbo 315800, China
2. School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
3. Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou 310023, China
4. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
 全文: PDF(2587 KB)   HTML
摘要:

为了改善机加工过程中油基气雾润滑形成的高油雾质量浓度环境,提出磁场辅助纳米流体气雾润滑技术. 该技术可以大幅降低作业环境的油雾质量浓度. 搭建磁场辅助气雾装置,配制水基Fe3O4纳米流体切削液. 研究磁场影响下纳米流体气雾的渗透和沉积特性. 对比考察磁化气雾在铣削430不锈钢过程中的油雾质量浓度和加工性能. 结果表明,磁场影响下的纳米流体气雾渗透能力提升,沉积量增多. 当磁感应强度为60 mT时,纳米流体气雾润滑下的油雾质量浓度、刀具磨损量、切削力和粗糙度分别比植物油气雾润滑低66.3%、22.7%、14.6%和23.4%. 磁场影响下的纳米流体易沉积且渗透进刀-屑接触界面的毛细微缝中发挥润滑冷却作用,抑制油雾的弥散.

关键词: 磁场辅助气雾润滑渗透油雾质量浓度刀具磨损切削力粗糙度    
Abstract:

A magnetic field assisted nanofluid spray lubrication technology was proposed in order to improve the high oil mist mass concentration environment formed by oil-based spray lubrication during machining. The innovation method can significantly reduce the oil mist mass concentration in the working environment. A magnetic field assisted spray device was constructed, and a water-based Fe3O4 nanofluid was prepared as cutting fluid. The penetration and deposition characteristics of nanofluid droplets under different magnetic induction intensities were analyzed. The oil mist mass concentration and machining performance of magnetized nanofluid mist during milling with 430 stainless steel were comparatively analyzed. Results show that the penetrability of nanofluid droplet was improved and the deposition amount was increased under the influence of magnetic field. The oil mist mass concentration, tool wear, cutting force, and roughness of nanofluid spray lubrication with 60 mT magnetic induction intensity were 66.3%, 22.7%, 14.6%, and 23.4% lower than those of vegetable oil spray lubrication, respectively. The nanofluid mist is easy to deposit under the influence of magnetic field and penetrate into the capillary micro crevice in the tool-chip contact interface to play a lubricating and cooling role and inhibit the dispersion of the oil mist.

Key words: magnetic field assistance    spray lubrication    penetration    oil mist mass concentration    tool wear    cutting force    roughness
收稿日期: 2023-10-30 出版日期: 2024-10-23
CLC:  TG 506  
基金资助: 国家自然科学基金资助项目(52275468);国家重点研发计划资助项目(2020YFB2010600);宁波职业技术学院2022年度国家级科研项目培育课题(NZ22GJ003).
通讯作者: 许雪峰     E-mail: tomtaolv@163.com;xuxuefeng@zjut.edu.cn
作者简介: 吕涛(1992—),男,副教授,博士,从事精密及特种加工技术、绿色加工工艺技术的研究. orcid.org/ 0009-0004-8448-9401. E-mail:tomtaolv@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吕涛
于爱兵
许雪峰
马敏海
赵丛林

引用本文:

吕涛,于爱兵,许雪峰,马敏海,赵丛林. 磁场辅助纳米流体气雾渗透沉积特性及其加工性能[J]. 浙江大学学报(工学版), 2024, 58(11): 2320-2329.

Tao LV,Aibing YU,Xuefeng XU,Minhai MA,Conglin ZHAO. Penetration and deposition characteristics and machining performance of magnetic field assisted nanofluid spray lubrication. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2320-2329.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2320

图 1  mMQL系统应用于铣削时的理论结构
图 2  改造后的喷嘴
图 3  液滴采集装置
图 4  沉积实验平台的示意图
图 5  油雾质量浓度检测装置
项目条件
机床VDF-850数控加工中心
工件材料AISI 430 不锈钢
尺寸为210 mm×160 mm×220 mm
刀柄端铣刀柄, 直径为35 mm, 三齿
型号为TAP400R C32-35-200L
刀具硬质合金涂层刀具
型号为APMT160408PDER-H08
切削参数主轴转速: 1 000 r/min;
进给率: 0.10 mm/tooth;
轴向切深: 1 mm;
径向切深: 5 mm;
单次切削长度: 210 mm
冷却方式MQL和mMQL
切削液LB-2000植物油
水基Fe3O4纳米流体
MQL/mMQL 喷雾参数磁感应强度: 0、20、40、60、80、100 mT;
体积流量: 20 mL/h;
气压: 0.4 MPa;
喷嘴距离: 20 mm
表 1  铣削加工的实验条件
图 6  不同磁感应强度下纳米流体液滴的接触角
图 7  不同磁感应强度下纳米流体的表面张力
图 8  不同磁感应强度下纳米流体的动力黏度
图 9  毛细渗透模型
图 10  不同磁感应强度下纳米流体的渗透深度
图 11  不同磁感应强度下纳米流体的毛细驱动压力
图 12  不同磁感应强度下的纳米流体雾化液滴分布
图 13  不同磁感应强度下的纳米流体雾化液滴粒径
图 14  不同磁感应强度下的纳米流体油雾沉积量
图 15  不同润滑条件下的油雾质量浓度
图 16  不同润滑条件下的刀具后刀面磨损变化
图 17  不同润滑条件下刀具后刀面磨损的光学显微图
图 18  不同润滑条件下的切削力变化
图 19  不同润滑条件下的工件表面粗糙度变化
23 XU Wenhao, LI Changhe, ZHANG Yanbin, et al Research progress and application of electrostatic atomization minimum quantity lubrication[J]. Journal of Mechanical Engineering, 2023, 59 (7): 110- 138
doi: 10.3901/JME.2023.07.110
24 高世桥, 刘海鹏. 毛细力学[M]. 北京: 科学出版社, 2010: 60-90.
25 LEE B B, RAVINDRA P, CHAN E S New drop weight analysis for surface tension determination of liquids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332 (2/3): 112- 120
26 PARK K H, OLORTEGUI Y J, YOON M C, et al A study on droplets and their distribution for minimum quantity lubrication (MQL)[J]. International Journal of Machine Tools and Manufacture, 2010, 50 (9): 824- 833
doi: 10.1016/j.ijmachtools.2010.05.001
27 贾东洲, 李长河, 张彦彬, 等 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报, 2022, 58 (5): 198- 211
JIA Dongzhou, LI Changhe, ZHANG Yanbin, et al Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant[J]. Journal of Mechanical Engineering, 2022, 58 (5): 198- 211
doi: 10.3901/JME.2022.05.198
28 GODLEVSKI V A, VOLKOV A V, LATYSHEV V N, et al The kinetics of lubricant penetration action during machining[J]. Lubrication Science, 2010, 9 (2): 127- 140
29 II M, EDA H, IMAI T, et al Development of high water-content cutting fluids with a new concept: fire prevention and environmental protection[J]. Precision Engineering, 2000, 24 (3): 231- 236
doi: 10.1016/S0141-6359(00)00036-2
1 李林峰, 徐锦泱, 郭国强, 等 基于干切削与MQL的稀土镁合金铣削性能对比研究[J]. 工具技术, 2023, 57 (5): 12- 17
LI Linfeng, XU Jinyang, GUO Guoqiang, et al Comparative study on milling performances of rare-earth magnesium alloys under dry and MQL conditions[J]. Tool Engineering, 2023, 57 (5): 12- 17
doi: 10.3969/j.issn.1000-7008.2023.05.002
2 MAKHESANA M A, PATEL K M, KROLCZYK G M, et al Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 41: 225- 238
doi: 10.1016/j.cirpj.2022.12.015
3 高腾, 李长河, 张彦彬, 等 纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J]. 机械工程学报, 2023, 59 (13): 325- 342
GAO Teng, LI Changhe, ZHANG Yanbin, et al Mechanical behavior of material removal and predictive force model for CFRP grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering, 2023, 59 (13): 325- 342
doi: 10.3901/JME.2023.13.325
4 梁正一, 杨赫然, 刘寅, 等 基于MQL的锆基块体金属玻璃钻削仿真研究[J]. 工具技术, 2023, 57 (7): 90- 96
LIANG Zhengyi, YANG Heran, LIU Yin, et al Simulation research on drilling of zr-based bulk metal glass based on MQL[J]. Tool Engineering, 2023, 57 (7): 90- 96
doi: 10.3969/j.issn.1000-7008.2023.07.016
5 HE T, LIU N C, XIA H Z, et al Progress and trend of minimum quantity lubrication (MQL): a comprehensive review[J]. Journal of Cleaner Production, 2023, 386: 135809
doi: 10.1016/j.jclepro.2022.135809
6 KHANAFER K, ELTAGGAZ A, DEIAB I, et al Toward sustainable micro-drilling of Inconel 718 superalloy using MQL-nanofluid[J]. International Journal of Advanced Manufacturing Technology, 2020, 107 (7/8): 3459- 3469
7 GAO T, LI C H, JIA D Z, et al Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication[J]. Journal of Cleaner Production, 2020, 277: 123328
doi: 10.1016/j.jclepro.2020.123328
8 MARUDA R W, SZCZOTKARZ N, MICHALSKI M, et al Evaluation of tool wear during turning of Ti6Al4V alloy applying MQL technique with Cu nanoparticles diversified in terms of size[J]. Wear, 2023, 532-533: 205111
doi: 10.1016/j.wear.2023.205111
9 YANG M, LI C H, ZHANG Y B, et al Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics[J]. International Journal of Advanced Manufacturing Technology, 2019, 102 (5-8): 2617- 2632
doi: 10.1007/s00170-019-03367-0
10 ZHAO J F, LIU Z Q, WANG B, et al. A comprehensive review of generating, monitoring, evaluating, and controlling particle emissions during machining process [J] Journal of Manufacturing Systems , 2023, 70: 395-416.
11 LAWAL S A, CHOUDHURY I A, NUKMAN Y A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant[J]. Journal of Cleaner Production, 2013, 41: 210- 221
doi: 10.1016/j.jclepro.2012.10.016
12 王长勇, 王林超, 高衍新, 等 金属加工液接触者班前班后肺功能变化研究[J]. 职业卫生与应急救援, 2022, 40 (3): 273- 276
WANG Changyong, WANG Linchao, GAO Yanxin, et al Pulmonary function changing of workers exposed to metalworking fluids pre- and post-shift[J]. Occupational Health and Emergency Rescue, 2022, 40 (3): 273- 276
13 邹立海, 康殿民 金属加工液致癌性研究进展[J]. 中国公共卫生, 2022, 38 (5): 634- 636
ZOU Lihai, KANG Dianmin Research progress in carcinogenicity of metalworking fluids[J]. China Journal of Public Health, 2022, 38 (5): 634- 636
doi: 10.11847/zgggws1135442
14 国家环境保护局. 环境空气质量标准: GB3095-2012 [S]. 北京: 中国标准出版社, 2012.
15 赵威, 何宁, 李亮, 等 微量润滑系统参数对切削环境空气质量的影响[J]. 机械工程学报, 2014, 50 (13): 184- 189
ZHAO Wei, HE Ning, LI Liang, et al Investigation on the influence of system parameters on ambient air quality in minimum quantity lubrication milling process[J]. Journal of Mechanical Engineering, 2014, 50 (13): 184- 189
doi: 10.3901/JME.2014.13.184
16 SMOLINSKI J M, GULARI E, MANKE C W Atomization of dilute polymer additives as mist suppressants in metal cutting fluids[J]. AIChE Journal, 1996, 42 (5): 1201- 1202
doi: 10.1002/aic.690420502
17 XU X F, LV T, LUAN Z Q, et al Capillary penetration mechanism and oil mist concentration of Al2O3 nanoparticle fluids in electrostatic minimum quantity lubrication (EMQL) milling[J]. International Journal of Advanced Manufacturing Technology, 2019, 104 (5-8): 1937- 1951
doi: 10.1007/s00170-019-04023-3
18 XU M C, DAI Q W, HUANG W, et al Using magnetic fluids to improve the behavior of ball bearings under starved lubrication[J]. Tribology International, 2020, 141: 105950
doi: 10.1016/j.triboint.2019.105950
19 任政, 周剑锋, 孟咸年, 等 磁流体动压润滑机械密封的自适应控制方法研究[J]. 润滑与密封, 2019, 44 (2): 45- 50
REN Zheng, ZHOU Jianfeng, MENG Xiannian, et al Study on adaptive control method of mechanical seal hydrodynamically lubricated by magnetic fluid[J]. Lubrication Engineering, 2019, 44 (2): 45- 50
doi: 10.3969/j.issn.0254-0150.2019.02.008
20 崔歆, 李长河, 张彦彬, 等 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60 (9): 323- 337
CUI Xin, LI Changhe, ZHANG Yanbin, et al Force model and verification of magnetic traction nanolubricant grinding[J]. Journal of Mechanical Engineering, 2024, 60 (9): 323- 337
21 阳静璇. 羟基化合物修饰四氧化三铁纳米颗粒的研究[D]. 成都: 电子科技大学, 2017.
YANG Jingxuan. A research of Fe3O4 nanoparticles modified by hydroxyl functional compounds [D]. Chengdu: University of Electronic Science and Technology, 2017.
22 张隆基, 张卫民, 孙中溪 十二烷基苯磺酸钠在纳米Fe3O4表面的吸附行为[J]. 济南大学学报: 自然科学版, 2010, 24 (1): 40- 43
ZHANG Longji, ZHANG Weimin, SUN Zhongxi Adsorption behavior of sodium dodecyl benzene sulfonate on the surfaces of Fe3O4 nanoparticles[J]. Journal of University of Jinan: Science and Technology, 2010, 24 (1): 40- 43
[1] 宋牧原,王宜将,杨微,郎丰飞,陈伟,刘雪莹. 干湿循环中磷石膏基防渗材料的防渗和剪切特性[J]. 浙江大学学报(工学版), 2024, 58(9): 1902-1911.
[2] 刘超,黄尊鹏,黄绍服. 考虑材料形变的旋风铣削螺纹工件表面粗糙度建模[J]. 浙江大学学报(工学版), 2024, 58(4): 761-771.
[3] 赵俊键,梁腾,詹良通,梁钧,陈延博,赵宇,陈云敏. 基于渗透原理的可吸水模型根系研发与性能研究[J]. 浙江大学学报(工学版), 2023, 57(7): 1382-1392.
[4] 聂绍凯,刘鹏飞,巴特,陈云敏. 基于微流控芯片模型的渗流实验与数值模拟[J]. 浙江大学学报(工学版), 2023, 57(5): 967-976.
[5] 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2478-2486.
[6] 魏纲,朱彦华,尹鑫晟,丁智,崔允亮. 基于改进滤失试验的泥水盾构动态泥膜渗透特性研究[J]. 浙江大学学报(工学版), 2022, 56(10): 2057-2065.
[7] 程训,余建波. 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报(工学版), 2021, 55(5): 896-904.
[8] 苗发盛,吴益平,李麟玮,廖康,薛阳. 基于Boosting-决策树C5.0的岩体结构面粗糙度预测[J]. 浙江大学学报(工学版), 2021, 55(3): 483-490.
[9] 李睿鑫,邹贻权,胡大伟,周辉,王冲,周永祥,王祖琦. 高渗透压-硫酸盐侵蚀下混凝土时空劣化[J]. 浙江大学学报(工学版), 2021, 55(3): 539-547.
[10] 尹鑫晟,朱彦华,魏纲,丁智,崔允亮. 泥水盾构开挖面前泥浆渗透距离预测算法[J]. 浙江大学学报(工学版), 2021, 55(12): 2234-2242.
[11] 陈曦,曾亚武. 粗糙节理的改进形貌表征方法及采样点距效应[J]. 浙江大学学报(工学版), 2021, 55(11): 2161-2169.
[12] 杨微,任孟健,陈仁朋,刘雪莹,康馨. 复杂环境条件下改性膨润土的抗盐性能[J]. 浙江大学学报(工学版), 2021, 55(10): 1885-1893.
[13] 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性[J]. 浙江大学学报(工学版), 2021, 55(10): 1877-1884.
[14] 汪海晋,尹宗宇,柯臻铮,郭英杰,董辉跃. 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报(工学版), 2020, 54(5): 931-939.
[15] 谭芳芳,朱俊江,严天宏,高志强,何岭松. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报(工学版), 2020, 54(1): 40-47.