Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (5): 873-878    DOI: 10.3785/j.issn.1008-973X.2022.05.004
机械工程     
磁流变阻尼器无模型前馈/反馈复合控制
王小龙(),吕海峰,黄晋英,刘广璞
中北大学 机械工程学院,山西 太原 030051
Model-free feedforward/feedback control scheme for magnetorheological damper
Xiao-long WANG(),Hai-feng LV,Jin-ying HUANG,Guang-pu LIU
School of Mechanical Engineering, North University of China, Taiyuan 030051, China
 全文: PDF(1768 KB)   HTML
摘要:

为了实现磁流变(MR)阻尼器高可靠性和高精度的阻尼力跟踪控制,克服基于逆向动力学模型的前馈控制易受模型误差和外界干扰影响的问题,提出结构简单、实现容易的无模型前馈/反馈复合控制(MFFFFBC)方法. 利用磁流变液减振器阻尼力连续可调的特点,将磁流变阻尼器控制器前一时刻的控制量进行采样保持作为前馈控制器,以避免建立复杂的磁流变阻尼器逆向动力学模型. 利用期望阻尼力与实际阻尼力之间的跟踪误差信号构建反馈控制器对前馈控制量进行实时修正,利用饱和函数对控制电压进行限幅,以避免控制电压高频振荡. 试验结果表明,在MFFFFBC控制下输出电压连续光滑变化,与经典的基于Heaviside阶跃函数的控制相比,采用本研究所提出的控制策略,黏性阻尼力和摩擦阻尼力的跟踪误差分别减小了21.98%和26.64%.

关键词: 磁流变阻尼器动力学模型阻尼力跟踪无模型前馈/反馈控制(MFFFFBC)半主动控制    
Abstract:

A novel model-free feedforward/feedback control (MFFFFBC) scheme with simple structure and easy implementation was proposed, in order to achieve the damping force tracking with high reliability and accuracy, as well as to overcome the influence of the model errors and external disturbances on the inverted parametric forward control of the magnetorheological (MR) damper. Taking advantage of the continuously adjustable characteristics of the damping force of the MR fluid dampers, the control signal of the MR damper at the previous moment was sampled and held as the feedforward controller rather than the complex inverse dynamic models. The feedback controller was developed to correct the feedforward control by using the force tracking errors between the desired and actual damping forces, and a saturation function was utilized to constrain the amplitude of the control voltage. Therefore, the high frequency chattering of the control voltage can be avoided. Experimental results show that the proposed controller can command the continuous and smooth control voltage, and the force tracking errors of the viscous damping and friction damping were reduced by 21.98% and 26.64% respectively compared with the classical Heaviside function damper controller.

Key words: magnetorheological damper    dynamic model    damping force tracking    model-free feedforward/feedback controller (MFFFFBC)    semi-active control
收稿日期: 2021-05-16 出版日期: 2022-05-31
CLC:  TH 13  
基金资助: 国家自然科学基金资助项目 (61803348);山西省高等学校科技创新项目(2019L0578);可靠性与环境工程技术国防科技重点实验室开放基金资助项目(202010152)
作者简介: 王小龙(1989—),男,讲师,博士,从事结构振动与控制研究. orcid.org/0000-0002-3345-7221. E-mail: xiaolongzhiwang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王小龙
吕海峰
黄晋英
刘广璞

引用本文:

王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.

Xiao-long WANG,Hai-feng LV,Jin-ying HUANG,Guang-pu LIU. Model-free feedforward/feedback control scheme for magnetorheological damper. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 873-878.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.004        https://www.zjujournals.com/eng/CN/Y2022/V56/I5/873

图 1  磁流变阻尼器快速控制原型实验平台
图 2  磁流变阻尼器控制试验系统原理示意图
图 3  HFC黏性阻尼力跟踪控制实验结果
图 4  HFC摩擦阻尼力跟踪控制实验结果
图 5  MFFFFBC黏性阻尼力跟踪控制实验结果
图 6  MFFFFBC摩擦阻尼力跟踪控制实验结果
图 7  阻尼力跟踪误差概率密度分布
1 张丽霞, 庞齐齐, 潘福全, 等 磁流变减振器魔术公式模型在悬架控制中的应用[J]. 中国机械工程, 2020, 31 (14): 1659- 1665
ZHANG Li-xia, PANG Qi-qi, PAN Fu-quan, et al Suspension control applications of magnetorheological damper formula model[J]. China Mechanical Engineering, 2020, 31 (14): 1659- 1665
doi: 10.3969/j.issn.1004-132X.2020.14.003
2 陈昭晖, 倪一清 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1551- 1558
CHEN Zhao-hui, NI Yi-qing Real-time damping-force tracking control of self-sensing magnetorheological dampers[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1551- 1558
3 黄腾逸, 周瑾, 徐岩等 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报: 工学版, 2020, 54 (10): 2001- 2008
HUANG Teng-yi, ZHOU Jin, XU Yan, et al Modeling of MR damper based on multi-field coupling analysis and influence of structural parameters[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 2001- 2008
4 WANG D H, LIAO W H Semiactive controllers for magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures, 2005, 16 (11/12): 983- 993
5 STANWAY R, SPROSTON J L, STEVENS N G Nonlinear modelling of an electro-rheological vibration damper[J]. Journal of Electrostatics, 1987, 20 (2): 167- 184
doi: 10.1016/0304-3886(87)90056-8
6 SPENCER JR B F, DYKE S J, SAIN M K, et al Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997, 123 (3): 230- 238
doi: 10.1061/(ASCE)0733-9399(1997)123:3(230)
7 BAI X X, CAI F L, CHEN P Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers[J]. Mechanical Systems and Signal Processing, 2019, 117: 157- 169
doi: 10.1016/j.ymssp.2018.07.050
8 DYKE S J, SPENCER JR B F, SAIN M K, et al Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Materials and Structures, 1996, 5 (5): 565- 575
doi: 10.1088/0964-1726/5/5/006
9 SIMS N D, STANWAY R, PEEL D J, et al Controllable viscous damping: an experimental study of an electrorheological long-stroke damper under proportional feedback control[J]. Smart Materials and Structures, 1999, 8 (5): 601
doi: 10.1088/0964-1726/8/5/311
10 WEBER F Robust force tracking control scheme for MR dampers[J]. Structural Control and Health Monitoring, 2015, 22 (12): 1373- 1395
doi: 10.1002/stc.1750
11 CHANG C C, ROSCHKE P Neural network modeling of a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 1998, 9 (9): 755- 764
doi: 10.1177/1045389X9800900908
12 程明. 新型磁流变阻尼器及整星半主动隔振系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
CHEN Ming. Research of a novel magnetorheological damper and semi-active whole-spacecraft vibration isolation [D]. Harbin: Harbin Institute of Technology, 2020.
13 邬家利, 王修勇, 黄佩 磁流变阻尼器力学性能降低原因分析[J]. 湖南科技大学学报:自然科学版, 2020, 35 (2): 51- 55
WU Jia-li, WANG Xiu-yong, HUANG Pei Analysis on mechanical properties reduce of magnetorheological damper[J]. Journal of Hunan University of Science and Technology: Natural Science Edition, 2020, 35 (2): 51- 55
[1] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[2] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[3] 黄腾逸,周瑾,徐岩,孟凡许. 基于多场耦合分析的磁流变阻尼器建模与结构参数影响[J]. 浙江大学学报(工学版), 2020, 54(10): 2001-2008.
[4] 陈英龙,闫迪,张增猛,宁大勇,弓永军. 基于水压直驱的软体单元的动静态特性[J]. 浙江大学学报(工学版), 2019, 53(8): 1602-1609.
[5] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[6] 张铁,肖蒙,邹焱飚,肖佳栋. 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1865-1873.
[7] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[8] 张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.
[9] 郑钰馨, 奚鹰, 卜王辉, 李梦如. RV减速器5自由度纯扭转模型非线性特性分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2098-2109.
[10] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[11] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[12] 魏春雨, 周晓军, 魏燕定, 唐昉. 基于Vortex的6自由度平台洗出运动仿真[J]. J4, 2012, 46(8): 1390-1396.
[13] 孔天荣,李欣,梅德庆,陈子辰. 磁流变智能镗杆的动力学模型[J]. J4, 2010, 44(11): 2050-2055.
[14] 文丽华 王树荣 骆仲泱 王琦 施海云 方梦祥 岑可法. 生物质的多组分热裂解动力学模型[J]. J4, 2005, 39(2): 247-252.
[15] 刘忠民 俞小莉 沈瑜铭. 配气机构动力学模型的比较研究[J]. J4, 2005, 39(12): 1941-1945.