Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2286-2297    DOI: 10.3785/j.issn.1008-973X.2021.12.008
机械工程     
管道内壁四足爬壁机器人的运动学与步态规划
李琳1(),薛泽浩1,蔡蒂2,张铁1,*()
1. 华南理工大学 机械与汽车工程学院,广东 广州 510641
2. 广州供电局有限公司,广东 广州 510620
Kinematics and gait planning of wall-climbing quadruped robot for pipeline inner wall
Lin LI1(),Ze-hao XUE1,Di CAI2,Tie ZHANG1,*()
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
2. Guangzhou Power Supply Bureau Limited Company, Guangzhou 510620, China
 全文: PDF(2298 KB)   HTML
摘要:

研究用于检测气体绝缘金属封闭开关(GIS)内部的负压吸附管道内壁四足爬壁机器人. 分别对机器人的腿部和机身进行运动学分析,采用改进的牛顿迭代法解决机身正运动学求解困难的问题. 对机器人沿管道轴向和圆周方向的爬壁运动进行步态规划,提出运动过程零冲击的轨迹规划方法. 使用Adams进行运动仿真,并在四足爬壁机器人样机上进行水平和垂直管道的全方位爬壁实验. 结果表明:机器人的运动轨迹与所规划的步态一致,运动过程中速度与加速度无突变,运动平稳,无明显冲击,运动学模型的正确性和所规划步态的合理性得到验证. 在GIS管道的实际检测应用中,实现机器人在不同工况下的平稳爬壁运动与检测.

关键词: 管道机器人四足爬壁机器人运动学步态分析轨迹规划    
Abstract:

A wall-climbing quadruped robot for pipeline inner wall with negative pressure adsorption was investigated, which was used to detect the inside of gas insulated switchgear (GIS). The kinematics of the legs and body of the robot was analyzed, and an improved Newton iteration method was used to solve the complex problem of the body’s forward kinematics. The gait planning of the robot climbing along the axial and circumferential direction of the pipeline was carried out, and a zero-impact trajectory planning method was proposed. Adams was applied for motion simulation, and the omnidirectional wall climbing experiments of horizontal and vertical pipelines were carried out with the robot prototype. Results showed that the robot’s trajectory was consistent with the planned gait, and there was no sudden change in velocity and acceleration during the movement. The movement process was stable without noticeable impact. The correctness of the kinematic model and the rationality of the planned gait were verified. The robot was applied to the actual detection of the GIS pipeline, and the stable wall climbing motion and detection under different working conditions were realized.

Key words: pipeline robot    wall-climbing quadruped robot    kinematics    gait analysis    trajectory planning
收稿日期: 2021-01-31 出版日期: 2021-12-31
CLC:  TP 242  
基金资助: 广东省科技计划资助项目(2019B040402006);气体绝缘金属封闭开关内部检测壁虎机器人研发及应用(GZHKJXM20170068)
通讯作者: 张铁     E-mail: linli@scut.edu.cn;merobot@scut.edu.cn
作者简介: 李琳(1962—),女,教授,从事机器人技术及工程应用研究. orcid.org/0000-0002-7586-4431. E-mail: linli@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李琳
薛泽浩
蔡蒂
张铁

引用本文:

李琳,薛泽浩,蔡蒂,张铁. 管道内壁四足爬壁机器人的运动学与步态规划[J]. 浙江大学学报(工学版), 2021, 55(12): 2286-2297.

Lin LI,Ze-hao XUE,Di CAI,Tie ZHANG. Kinematics and gait planning of wall-climbing quadruped robot for pipeline inner wall. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2286-2297.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.008        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2286

图 1  爬壁机器人机械结构
图 2  机器人曲面适应性分析模型
$i$ ${a_{i - 1}}$ ${\alpha _{i - 1}}$ ${d_i}$ ${\theta _i}$
1 0 0 0 ${\theta _1}$
2 0 90° 0 ${\theta _{\text{2}}}$
3 ${L_1}$ 0 0 ${\theta _{\text{3}}}$
4(末端) ${L_2}$ 0 $ - d$ 0
表 1  机器人串联腿部结构的D-H参数
图 3  爬壁机器人运动学建模
图 4  机器人的轴向步态规划
图 5  机器人的圆周步态规划
图 6  轴向步态分析示意图
图 7  圆周步态分析示意图
编号 $\eta_1 $ $\eta_2 $ $\eta_3 $
一号腿 $[ - {60^ \circ },{60^ \circ }]$ $[ - {60^ \circ },{60^ \circ }]$ $[{30^ \circ },{150^ \circ }]$
二号腿 $[ - {60^ \circ },{60^ \circ }]$ $[{120^ \circ },{240^ \circ }]$ $[ - {150^ \circ }, - {30^ \circ }]$
三号腿 $[ - {60^ \circ },{60^ \circ }]$ $[ - {60^ \circ },{60^ \circ }]$ $[ - {150^ \circ }, - {30^ \circ }]$
四号腿 $[ - {60^ \circ },{60^ \circ }]$ $[{120^ \circ },{240^ \circ }]$ $[{30^ \circ },{150^ \circ }]$
表 2  机器人关节角度限制
图 8  机器人运动轨迹曲线
图 9  零冲击规划一号腿关节角度、角速度与角加速度
图 10  3次样条插值法一号腿关节角度、角速度与角加速度
图 11  控制系统结构图
图 12  垂直管道爬壁实验
图 13  水平管道爬壁实验
图 14  一号腿实际关节角度
图 15  一号腿运动轨迹误差分析
图 16  机身的加速度和姿态变化
图 17  机器人在变电站现场GIS管道内的实验
图 18  不同管道内机身加速度变化曲线
1 LI Z , WANG Q Z , LI J , et al. A new approach to classification of devices and its application to classification of in-pipe robots [C]// IEEE Conference on Industrial Electronics and Applications. Hefei: IEEE, 2016: 1426-1431.
2 ROH S, CHOI H Differential-drive in-pipe robot for moving inside urban gas pipelines[J]. IEEE Transactions on Robotics, 2005, 21 (1): 1- 17
doi: 10.1109/TRO.2004.838000
3 RODRIGUE H, WANG W, HAN M W, et al An overview of shape memory alloy-coupled actuators and robots[J]. Soft Robotics, 2017, 4 (1): 3- 15
doi: 10.1089/soro.2016.0008
4 BHADORIYA A, GUPTA V K, MUKHERJEE S Development of in-pipe inspection robot[J]. Materials Today: Proceedings, 2018, 5 (9): 20769- 20776
doi: 10.1016/j.matpr.2018.06.406
5 PARK J, HYUN D, CHO W H, et al Normal-force control for an in-pipe robot according to the inclination of pipelines[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (12): 5304- 5310
doi: 10.1109/TIE.2010.2095392
6 唐德威, 李庆凯, 梁涛, 等 三轴差动式管道机器人机械自适应驱动技术[J]. 机械工程学报, 2008, 44 (9): 128- 133
TANG De-wei, LI Qing-kai, LIANG Tao, et al Mechanical self-adaptive drive technology of triaxial differential pipe-robot[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (9): 128- 133
doi: 10.3321/j.issn:0577-6686.2008.09.022
7 CISZEWSKI M, BURATOWSKI T, GIERGIEL M, et al Virtual prototyping, design and analysis of an in-pipe inspection mobile robot[J]. Journal of Theoretical and Applied Mechanics, 2014, 52 (2): 417- 429
8 BERNS K , ILG W , CORDES S , et al. Multi-joint robot for autonomous sewer inspection [C]// Proceedings 2000 ICRA. Millennium Conference. San Francisco: IEEE, 2002: 1701-1706.
9 李杰超, 曹力科, 肖晓晖 轮式磁吸附超声检测爬壁机器人的设计与吸附稳定性分析[J]. 中南大学学报:自然科学版, 2019, 50 (12): 2989- 2997
LI Jie-chao, CAO Li-ke, XIAO Xiao-hui Design and adsorption stability analysis of wall climbing robot based on wheeled magnetic adsorption for ultrasonic detection[J]. Journal of Central South University: Science and Technology, 2019, 50 (12): 2989- 2997
doi: 10.11817/j.issn.1672-7207.2019.12.008
10 宋伟, 姜红建, 王滔, 等 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报:工学版, 2018, 52 (10): 1837- 1844
SONG Wei, JIANG Hong-jian, WANG Tao, et al Optimization design and experimental research on magnetic components for wall-climbing robot[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1837- 1844
doi: 10.3785/j.issn.1008-973X.2018.10.001
11 刘泉, 陈志华 具有良好壁面过渡能力的新型爬壁机器人动力学建模与分析[J]. 机床与液压, 2018, 46 (23): 1- 5
LIU Quan, CHEN Zhi-hua Dynamic modeling and analysis of new climbing robot with good wall transition capability[J]. Machine Tool and Hydraulics, 2018, 46 (23): 1- 5
doi: 10.3969/j.issn.1001-3881.2018.23.001
12 UNVER O, UNERI A, AYDEMIR A, et al. Geckobot: a gecko inspired climbing robot using elastomer adhesives [C]// Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2029-2335.
13 ZHANG L, MA S G, INOUE K, et al. Omni-directional walking of a quadruped robot with optimal body postures on a slope [C]// Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona: IEEE, 2005: 2976-2981.
14 BI Z M, ZHANG W J, CHEN I M, et al Automated geneartion of the D–H parameters for configuration design of modular manipulators[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23 (5): 553- 562
doi: 10.1016/j.rcim.2006.02.014
15 GÜLHAN M M, ERBATUR K Kinematic arrangement optimization of a quadruped robot with genetic algorithms[J]. Measurement and Control, 2018, 51 (9/10): 406- 416
16 CHEN X D, WATANABE K, IZUMI K Kinematic solution of a quadruped walking robot-posture analysis of TITAN-VIII[J]. IFAC Proceedings Volumes, 1999, 32 (2): 827- 832
doi: 10.1016/S1474-6670(17)56140-6
17 KANG T, KIM H, SON T, et al. Design of quadruped walking and climbing robot [C]// Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2003: 619-624.
18 NAM W, SEO T W, KIM B, et al Kinematic analysis and experimental verification on the locomotion of gecko[J]. Journal of Bionic Engineering, 2009, 6 (3): 246- 254
doi: 10.1016/S1672-6529(08)60121-3
19 SHKOLNIK A, TEDRAKE R. Inverse kinematics for a point-foot quadruped robot with dynamic redundancy resolution [C]// Proceedings 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 4331-4336.
20 CAMPA R, BERNAL J, SOTO I. Kinematic modeling and control of the hexapod parallel robot [C]// 2016 American Control Conference. Boston: IEEE, 2016: 1203-1208.
21 HOWARD D, ZHANG S J, SANGER D J Kinematic analysis of a walking machine[J]. Mathematics and Computers in Simulation, 1996, 41 (5/6): 525- 538
22 阮鹏, 俞志伟, 张昊, 等 基于ADAMS的仿壁虎机器人步态规划及仿真[J]. 机器人, 2010, 32 (4): 499- 504
RUAN Peng, YU Zhi-wei, ZHANG Hao, et al Gait planning and simulation of gecko inspired robot based on ADAMS[J]. ROBOT, 2010, 32 (4): 499- 504
doi: 10.3724/SP.J.1218.2010.00499
23 SON D H, JEON D S, NAM W C, DONGHOON, et al Gait planning based on kinematics for a quadruped gecko model with redundancy[J]. Robotics and Autonomous Systems, 2010, 58 (5): 648- 656
doi: 10.1016/j.robot.2009.11.009
24 GUAN Y, ZHU H, WU W, et al A modular biped wall-climbing robot with high mobility and manipulating function[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18 (6): 1787- 1798
doi: 10.1109/TMECH.2012.2213303
25 GHOSH S K Introduction to robotics: mechanics and control[J]. Journal of Materials Processing Technology, 1991, 25 (2): 239- 240
doi: 10.1016/0924-0136(91)90096-W
26 CHOI H B, KONNO A, UCHIYAMA M Closed-form forward kinematics solutions of a 4-DOF parallel robot[J]. International Journal of Control, Automation and Systems, 2009, 7 (5): 858- 864
doi: 10.1007/s12555-009-0520-1
27 ONANAYE A S Nonlinear programming: theories and algorithms of some unconstrained optimization methods (steepest descent and Newton's method)[J]. International Journal of Engineering and Management Research, 2020, 10 (2): 1- 12
28 JIANG Z L A new algorithm for computing the inverse and generalized inverse of the scaled factor circulant matrix[J]. Journal of Computational Mathematics, 2008, 26 (1): 112- 122
29 陈金平, 贺昱曜, 巨永锋, 等. 三电平逆变器SHEPWM牛顿下山法求解研究[J]. 电力电子技术, 2013, 47(9): 8-10.
CHEN Jin-ping , HE Yu-yao , JU Yong-feng , et al. SHEWPM of three-level inverter based on newton downhill method [J], Power Electronics , 2013, 47(9): 8-10.
30 LI B, LI Y, RONG X. Locomotion planning and performance analysis of quadruped robot based on ADAMS and MATLAB co-simulation [C]// Proceedings of the 32nd Chinese Control Conference. Xi'an: IEEE, 2013: 5914-5919.
[1] 宋晓晨,姚骁帆,叶尚军. 基于伪谱法的小型超音速无人机轨迹优化[J]. 浙江大学学报(工学版), 2022, 56(1): 193-201.
[2] 陈原,郭登辉,田丽霞. 绳牵引刚柔式波浪补偿并联机构的设计与建模[J]. 浙江大学学报(工学版), 2021, 55(5): 810-822.
[3] 李伟达,王柱,张虹淼,李娟,顾洪. 床式步态康复训练系统机构设计[J]. 浙江大学学报(工学版), 2021, 55(5): 823-830.
[4] 毛晨涛,陈章位,张翔,祖洪飞. 基于相对精度指标的机器人运动学校准[J]. 浙江大学学报(工学版), 2020, 54(7): 1316-1324.
[5] 李研彪,郑航,徐梦茹,罗怡沁,孙鹏. 5-PSS/UPU并联机构的多目标性能参数优化[J]. 浙江大学学报(工学版), 2019, 53(4): 654-663.
[6] 秦超, 梁喜凤, 路杰, 彭明, 金超杞. 七自由度番茄收获机械手的轨迹规划与仿真[J]. 浙江大学学报(工学版), 2018, 52(7): 1260-1266.
[7] 蒋卓华, 蒋焕煜, 童俊华. 穴盘苗自动移栽机末端执行器的优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1119-1125.
[8] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[9] 王明斗, 陶建峰, 覃程锦, 刘成良. 空间余量最优的拼装机轨迹规划[J]. 浙江大学学报(工学版), 2017, 51(3): 453-460.
[10] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[11] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[12] 刘湘琪,蒙臻,倪敬,朱泽飞. 三自由度液压伺服机械手轨迹优化[J]. 浙江大学学报(工学版), 2015, 49(9): 1776-1782.
[13] 江沛, 黄水华, 韦巍, 单才华, 项基.
带关节约束的非冗余机械手臂二阶逆运动学控制
[J]. 浙江大学学报(工学版), 2015, 49(10): 1885-1892.
[14] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[15] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.