浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1260-1266    DOI: 10.3785/j.issn.1008-973X.2018.07.005
 机器人建模与控制

Trajectory planning and simulation for 7-DoF tomato harvesting manipulator
QIN Chao, LIANG Xi-feng, LU Jie, PENG Ming, JIN Chao-qi
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
 全文: PDF(1259 KB)   HTML

Abstract:

The seven degrees of freedom tomato harvesting manipulator was chosen as the research object in order to analyze the trajectory planning method of tomato cluster harvesting manipulator. The kinematics model was established by Denavit-Hartenberg (D-H) method, and the forward and inverse solutions of the position and velocity were calculated. Polynomial interpolation, linear interpolation with parabola transition, cycloid motion method and B-spline interpolation method were applied. Joint space trajectory planning and simulation experiments were conducted on the joint movement from the reset point to the picking point under the constraint condition of the joints. The displacement, velocity and acceleration of each joint were analyzed, and the maximum joint velocity of different planning methods was quantitatively analyzed. The displacement and velocity of the end effector were analyzed according to the quintic polynomial interpolation method and the cycloidal motion method. Results show that the quintic polynomial interpolation method meets the requirements of displacement, velocity and acceleration boundary conditions of path points. The planned joint trajectory is continuous and smooth, and the maximum joint velocity is reduced by 6.25% averagely compared with cycloidal motion method, which improves the mechanical safety performance. The corresponding end effector's movement trajectory is smooth and no jump point.

 CLC: TP241

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

QIN Chao, LIANG Xi-feng, LU Jie, PENG Ming, JIN Chao-qi. Trajectory planning and simulation for 7-DoF tomato harvesting manipulator. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1260-1266.

#### 链接本文:

 [1] 刘松国,朱世强,吴文祥. 具有运动时间约束的机械手最优平滑轨迹规划[J].电机与控制学报,2009,13(06):897-902. LIU Song-guo, ZHU Shi-qiang, WU Wen-xiang. Smoothness-optimal trajectory planning method with constrint on traveling time for manipulators[J]. Electric Machines and Control, 2009, 13(06):897-902. [2] 任重,杨灿军,陈鹰.轨迹规划中的B样条插值算法[J].机电工程,2001,18(05):38-39. REN Zhong, YANG Can-jun, CHEN Ying. B-splineinterpolation algorithm in motion planning[J]. Journal of Mechanical and Electrical Engineering, 2001, 18(05):38-39. [3] 蔡自兴,谢斌.机器人学[M].3版.北京:清华出版社,2015:273-279. [4] 宁学涛,潘玉田,杨亚威,等.基于运动学和动力学的关节空间轨迹规划[J].计算机仿真,2015,32(02):409-413. NING Xue-tao, PAN Yu-tian, YANG Ya-wei, et al. Joint space trajectory planning of Python-based Delta robot[J]. Computer Simulation, 2015, 32(02):409-413. [5] 林威,江五讲.工业机器人笛卡尔空间轨迹规划[J].机械工程与自动化,2014,43(05):141-143. LIN Wei, JIANG Wu-jiang. Trajectory planning of industrial robot in Cartesian space[J]. Mechanical Engineering and Automation, 2014, 43(05):141-143. [6] 凌家良,施荣华,王国才.工业机器人关节空间的插值轨迹规划[J].惠州学院学报:自然科学版,2009,29(03):52-57. LING Jia-liang, SHI Rong-hua, WANG Guo-cai. The industrial robot trajectory planning in joint space[J]. Journal of Huizhou University:Natural Science Edition, 2009, 29(03):52-57. [7] 张润峰,刁燕,陈是扦,等.手术机器人高阶多项式插值的轨迹规划[J].机械设计与制造,2013,34(12):161-163. ZHANG Run-feng, DIAO Yan, CHEN Shi-qian, et al. The trajectory planning for surgical robot using high-multinomial interpolation[J]. Machinery Design and Manufacture, 2013,34(12):161-163. [8] 孙玥,魏欣.基于五次多项式的码垛机器人轨迹规划[J].包装工程,2017,38(21):159-163. SUN Yue, WEI Xin. Trajectory planning of palletizing robot based on quintic polynomial[J]. Packaging Engineering, 2017, 38(21):159-163. [9] 陈培华,曹其新.基于逆动力学方法的关节型机器人轨迹控制[J].华中科技大学学报:自然科学版,2013,41(增1):17-20. CHEN Pei-hua, CAO Qi-xin. Trajectory control of the articulated robot based on inverse dynamics[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2013, 41(supple.1):17-20. [10] ZHANG L B, WANG Y, YANG Q H, et al. Kinematics and trajectory planning of a cucumber harvesting robot manipulator[J]. International Journal of Agricultural and Biological Engineering, 2009, 2(01):1-7. [11] 杨庆华,王燕,高峰,等.基于摆线运动的黄瓜采摘机器人终端滑模轨迹跟踪控制[J].农业工程学报,2009,25(05):94-99. YANG Qing-hua, WANG Yan, GAO Feng, et al. Trajectory tracking with terminal sliding mode control of cucumber picking robot manipulator based on cycloidal motion[J]. Transactions of the CSAE, 2009,25(05):94-99. [12] 王燕.黄瓜采摘机械手运动规划与控制系统设计[J].洛阳理工学院学报:自然科学版,2017,27(02):56-60. WANG Yan. Design on motion planning and manipulator control system of cucumber picking robot[J]. Journal of Luoyang Institute of Science and Technology:Natural Science Edition, 2017, 27(02):56-60. [13] 董辉,仲晓帆,黄胜.一种六关节机器人关节空间轨迹规划方法[J].浙江工业大学学报,2015,43(03):336-339. DONG Hui, ZHONG Xiao-fan, HUANG Sheng. Trajectory planning method in joint space for 6-DoFrobot[J]. Journal of Zhejiang University of Technology, 2015, 43(03):336-339. [14] 司艳伟,陈洪立.六自由度果蔬采摘机器人关节空间轨迹规划[J].轻工机械,2017(04):8-12. SI Yan-wei, CHEN Hong-li. Joint trajectory planning of 6 DoF fruit-vegetable harvesting robots[J]. Light Industry Machinery, 2017(04):8-12. [15] GUAN Y S, YOKOI K, STASSE O, et al. On robotic trajectory planning using polynomial interpolations[C]//2005 IEEE International Conference on Robotics and Biomimetics. Hong Kong:IEEE, 2005:111-116. [16] 梁喜凤,苗香雯,崔绍荣,等.番茄收获机械手运动学优化与仿真试验[J].农业机械学报,2005,36(07):96-100. LIANG Xi-feng, MIAO Xiang-wen, CUI Shao-rong, et al. Experiments of optimization and simulation on kinematics of a tomato harvesting manipulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(07):96-100. [17] 梁喜凤,王永维.番茄收获机械手机构型综合研究[J].农机化研究,2008,30(3):70-72. LIANG Xi-feng, WANG Yong-wei. Type-synthesis of a tomato harvesting manipulator[J]. Journal of Agricultural Mechanization Research, 2008, 30(3):70-72. [18] 梁喜凤,王永维,苗香雯.番茄收获机械手机构尺寸优化设计[J].机械设计与研究,2008,24(01):21-24. LIANG Xi-feng, WANG Yong-wei, MIAO Xiang-wen. Optimal design of mechanism for a tomato harvesting manipulator[J]. Machine Design and Research, 2008, 24(01):21-24. [19] CORKE P. Robotics, vision and control:fundamental algorithms in MATLAB[M]. 1st ed. Berlin:Springer, 2011. [20] CRAIG J J. Introduction to robotics:mechanics and control[M]. 3rd ed. Upper Saddle River:Pearson Education, 2005. [21] 梁喜凤,周涛,杨犇,等.一种七自由度番茄收获机械手的逆运动学研究[J].中国农机化学报,2016,37(3):34-39. LIANG Xi-feng, ZHOU Tao, YANG Ben, et al. Research on inverse kinematics of a 7 DoF tomato harvesting manipulator[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3):34-39. [22] 张鹏程,张铁.基于矢量积法的六自由度工业机器人雅可比矩阵求解及奇异位形的分析[J].机械设计与制造,2011(8):152-154. ZHANG Peng-cheng, ZHANG Tie. Analysis on solution of 6D of robot jacobian matrix and singularity configuration based on vector product method[J]. Machinery Design and Manufacture, 2011(8):152-154. [23] SICILIANO B, SCIAVICCO L, VILLANI L, et al. Robotics:modeling, planning and control[M]. London:Springer, 2010. [24] 卢君宜,杨庆华,高峰,等.五自由度农业采摘机器人轨迹规划[J].机电工程,2010,27(12):1-6. LU Jun-yi, YANG Qing-hua, GAO Feng, et al. Trajectory planning of a five DoF agricultural picking robot[J]. Journal of Mechanical and Electrical Engineering, 2010, 27(12):1-6. [25] 李小霞,汪木兰,刘坤,等.基于五次B样条的机械手关节空间平滑轨迹规划[J].组合机床与自动化加工技术,2012,49(8):39-42. LI Xiao-xia, WANG Mu-lan, LIU Kun, et al. Smooth trajectory planning based on five degrees B-spline for manipulator in joint space[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2012, 49(8):39-42.
 [1] 都明宇, 鲍官军, 杨庆华, 王志恒, 张立彬. 基于改进支持向量机的人手动作模式识别方法[J]. 浙江大学学报(工学版), 2018, 52(7): 1239-1246. [2] 王禹, 韦巍. 采用频域Prony方法估计信号重叠双分量[J]. 浙江大学学报(工学版), 2018, 52(6): 1157-1166. [3] 王扬威, 兰博文, 刘凯, 赵东标. 形状记忆合金丝驱动的柔性机械臂建模与实验[J]. 浙江大学学报(工学版), 2018, 52(4): 628-634. [4] 王卫星, 孙守迁, 李超, 唐智川. 基于卷积神经网络的脑电信号上肢运动意图识别[J]. 浙江大学学报(工学版), 2017, 51(7): 1381-1389.