| 计算机技术与控制工程 |
|
|
|
|
| 基于嵌入特征和稀疏矩阵的实体对齐方法 |
冯超文1,2( ),耿程晨1,2,刘英莉1,2,*( ) |
1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650500 2. 昆明理工大学 云南省计算机技术应用重点实验室,云南 昆明 650500 |
|
| Entity alignment method based on embedding features and sparse matrices |
Chaowen FENG1,2( ),Chengchen GENG1,2,Yingli LIU1,2,*( ) |
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China 2. Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science and Technology, Kunming 650500, China |
| 1 |
CHEN X, JIA S, XIANG Y A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948
doi: 10.1016/j.eswa.2019.112948
|
| 2 |
ZHAO X, ZENG W, TANG J, et al An experimental study of state-of-the-art entity alignment approaches[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (6): 2610- 2625
|
| 3 |
FU T C, CHUNG F L, LUK R, et al Stock time series pattern matching: template-based vs. rule-based approaches[J]. Engineering Applications of Artificial Intelligence, 2007, 20 (3): 347- 364
doi: 10.1016/j.engappai.2006.07.003
|
| 4 |
CHANDRASEKARAN D, MAGO V Evolution of semantic similarity: a survey[J]. ACM Computing Surveys, 2021, 54 (2): 1- 37
|
| 5 |
HERRMANN L, KOLLMANNSBERGER S Deep learning in computational mechanics: a review[J]. Computational Mechanics, 2024, 74 (2): 281- 331
doi: 10.1007/s00466-023-02434-4
|
| 6 |
CORSO G, STARK H, JEGELKA S, et al Graph neural networks[J]. Nature Reviews Methods Primers, 2024, 4: 17
doi: 10.1038/s43586-024-00294-7
|
| 7 |
QAISER S, ALI R Text mining: use of TF-IDF to examine the relevance of words to documents[J]. International Journal of Computer Applications, 2018, 181 (1): 25- 29
doi: 10.5120/ijca2018917395
|
| 8 |
COHEN W W, RICHMAN J. Learning to match and cluster large high-dimensional data sets for data integration [C]// Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton: ACM, 2002: 475–480.
|
| 9 |
BUSCALDI D, ROSSO P, GÓMEZ-SORIANO J M, et al Answering questions with an n-gram based passage retrieval engine[J]. Journal of Intelligent Information Systems, 2010, 34 (2): 113- 134
doi: 10.1007/s10844-009-0082-y
|
| 10 |
SARAWAGI S, BHAMIDIPATY A. Interactive deduplication using active learning [C]// Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton: ACM, 2002: 269–278.
|
| 11 |
ARASU A, GÖTZ M, KAUSHIK R. On active learning of record matching packages [C]// Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. Indianapolis: ACM, 2010: 783–794.
|
| 12 |
JEAN-MARY Y R, SHIRONOSHITA E P, KABUKA M R. ASMOV: results for OAEI 2010 [C]// Proceedings of the 5th International Workshop on Ontology Matching (OM 2010). Shanghai: [s.n.], 2010: 114−121.
|
| 13 |
SUCHANEK F M, ABITEBOUL S, SENELLART P. PARIS: probabilistic alignment of relations, instances, and schema [EB/OL]. (2011−11−30)[2025−03−05]. https://arxiv.org/pdf/1111.7164.
|
| 14 |
LACOSTE-JULIEN S, PALLA K, DAVIES A, et al. SiGMa: simple greedy matching for aligning large knowledge bases [C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago: ACM, 2013: 572−580.
|
| 15 |
SONG D, LUO Y, HEFLIN J Linking heterogeneous data in the semantic web using scalable and domain-independent candidate selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (1): 143- 156
doi: 10.1109/TKDE.2016.2606399
|
| 16 |
CHEN M, TIAN Y, YANG M, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment [EB/OL]. (2017−05−17)[2025−03−05]. https://arxiv.org/pdf/1611.03954.
|
| 17 |
FEY M, LENSSEN J E, MORRIS C, et al. Deep graph matching consensus [EB/OL]. (2020−01−27)[2025−03−05]. https://arxiv.org/pdf/2001.09621.
|
| 18 |
CAO Y, LIU Z, LI C, et al. Multi-channel graph neural network for entity alignment [EB/OL]. (2019−08−26)[2025−03−05]. https://arxiv.org/pdf/1908.09898.
|
| 19 |
SUN Z, HU W, ZHANG Q, et al. Bootstrapping entity alignment with knowledge graph embedding [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: ACM, 2018: 4396–4402.
|
| 20 |
MAO X, WANG W, WU Y, et al. Are negative samples necessary in entity alignment? An approach with high performance, scalability and robustness [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. [S.l.]: ACM, 2021: 1263−1273.
|
| 21 |
MAO X, WANG W, XU H, et al. MRAEA: an efficient and robust entity alignment approach for cross-lingual knowledge graph [C]// Proceedings of the 13th International Conference on Web Search and Data Mining. Houston: ACM, 2020: 420−428.
|
| 22 |
LIU Z, CAO Y, PAN L, et al. Exploring and evaluating attributes, values, and structures for entity alignment [EB/OL]. (2021−01−02)[2025−03−05]. https://arxiv.org/pdf/2010.03249.
|
| 23 |
WU Y, LIU X, FENG Y, et al. Relation-aware entity alignment for heterogeneous knowledge graphs [EB/OL]. (2019−08−22)[2025−03−05]. https://arxiv.org/pdf/1908.08210.
|
| 24 |
WU Y, LIU X, FENG Y, et al. Jointly learning entity and relation representations for entity alignment [EB/OL]. (2019−09−20)[2025−03−05]. https://arxiv.org/pdf/1909.09317.
|
| 25 |
CHEN M, SHI W, ZHOU B, et al. Cross-lingual entity alignment with incidental supervision [EB/OL]. (2021−01−26)[2025−03−05]. https://arxiv.org/pdf/2005.00171.
|
| 26 |
WANG Z, YANG J, YE X. Knowledge graph alignment with entity-pair embedding [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. [S.l.]: ACL, 2020: 1672−1680.
|
| 27 |
TANG J, ZHAO K, LI J. A fused Gromov-Wasserstein framework for unsupervised knowledge graph entity alignment [EB/OL]. (2023−05−11)[2025−03−05]. https://arxiv.org/pdf/2305.06574.
|
| 28 |
ZHAO Y, WU Y, CAI X, et al. From alignment to entailment: a unified textual entailment framework for entity alignment [C]// Findings of the Association for Computational Linguistics. Toronto: ACL, 2023: 8795−8806.
|
| 29 |
PATRINI G, VAN DEN BERG R, FORRE P, et al. Sinkhorn autoencoders [C]// 35th Uncertainty in Artificial Intelligence Conference. Toronto: PMLR, 2020: 733−743.
|
| 30 |
HAMUDA E, MC GINLEY B, GLAVIN M, et al Improved image processing-based crop detection using Kalman filtering and the Hungarian algorithm[J]. Computers and Electronics in Agriculture, 2018, 148: 37- 44
doi: 10.1016/j.compag.2018.02.027
|
| 31 |
GRANGER S, BESTGEN Y The use of collocations by intermediate vs. advanced non-native writers: a bigram-based study[J]. International Review of Applied Linguistics in Language Teaching, 2014, 52 (3): 229- 252
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|