| 能源与动力工程 |
|
|
|
|
| 变负载下大功率船舶全回转推进器水动及液控仿真 |
何浩1( ),舒永东2,3,林勇刚2,*( ),代富全2,张举2 |
1. 武汉船用机械有限责任公司,湖北 武汉 430080 2. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 3. 南京高精船用设备有限公司,江苏 南京 211103 |
|
| hydrodynamic and hydraulic-control simulation of high-power ship azimuth thruster under variable load |
Hao HE1( ),Yongdong SHU2,3,Yonggang LIN2,*( ),Fuquan DAI2,Ju ZHANG2 |
1. Wuhan Marine Machinery Plant Co. Ltd, Wuhan 430080, China 2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 3. Nanjing High Accurate Marine Equipment Co. Ltd, Nanjing 211103, China |
引用本文:
何浩,舒永东,林勇刚,代富全,张举. 变负载下大功率船舶全回转推进器水动及液控仿真[J]. 浙江大学学报(工学版), 2026, 60(1): 191-198.
Hao HE,Yongdong SHU,Yonggang LIN,Fuquan DAI,Ju ZHANG. hydrodynamic and hydraulic-control simulation of high-power ship azimuth thruster under variable load. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 191-198.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.018
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I1/191
|
| 1 |
WU T, LI R, CHEN Q, et al A numerical study on modeling ship maneuvering performance using twin azimuth thrusters[J]. Journal of Marine Science and Engineering, 2023, 11 (11): 2167
doi: 10.3390/jmse11112167
|
| 2 |
邹康, 桂满海, 赖明雁 三吊舱船舶尾部附体对性能影响与螺旋桨功率不平衡分析[J]. 船海工程, 2023, 52 (6): 54- 59 ZOU Kang, GUI Manhai, LAI Mingyan Influence of appendages upon performance and propellers power imbalance analysis of a vessel with triple pods[J]. Ship and Ocean Engineering, 2023, 52 (6): 54- 59
|
| 3 |
唐文彪, 张聪, 欧阳武, 等 大型船舶吊舱推进器发展现状[J]. 舰船科学技术, 2020, 42 (7): 8- 12 TANG Wenbiao, ZHANG Cong, OUYANG Wu, et al Development status of large-scale ship pod propeller[J]. Ship Science and Technology, 2020, 42 (7): 8- 12
|
| 4 |
郑安宾, 许汪歆, 梁金雄, 等 吊舱式电力推进应用及发展[J]. 机电设备, 2022, 39 (5): 4- 8 ZHENG Anbin, XU Wangxin, LIANG Jinxiong, et al Application and development of podded electric propulsion[J]. Mechanical and Electrical Equipment, 2022, 39 (5): 4- 8
|
| 5 |
舒永东, 凌宏杰, 林勇刚, 等 全回转吊舱推进器动态转舵力矩数值预报研究[J]. 中国造船, 2024, 65 (1): 123- 132 SHU Yongdong, LING Hongjie, LIN Yonggang, et al Research on predicting dynamic rudder torque of fully rotating pod thruster[J]. Shipbuilding of China, 2024, 65 (1): 123- 132
|
| 6 |
中国船舶七〇四所研制10兆瓦大功率吊舱推进器取得重大突破 [EB/OL]. [2025-01-23]. https://www.csic.com.cn/n135/n171/n179/c29924/content.html
|
| 7 |
李祥光, 管义锋, 刘志伟, 等 基于STAR-CCM+的无轴轮缘推进器水动力性能分析[J]. 舰船科学技术, 2023, 45 (22): 50- 55 LI Xiangguang, GUAN Yifeng, LIU Zhiwei, et al Simulation of hydrodynamic performance of shaftless rim-driven thruster based on STAR-CCM[J]. Ship Science and Technology, 2023, 45 (22): 50- 55
|
| 8 |
张敏革, 韩光哲, 武天龙, 等 定子叶片对推进器水动力性能影响分析[J]. 舰船科学技术, 2023, 45 (23): 31- 38 ZHANG Minge, HAN Guangzhe, WU Tianlong, et al Influence analysis of stator blade on hydrodynamic performance of propeller[J]. Ship Science and Technology, 2023, 45 (23): 31- 38
|
| 9 |
陈振纬, 周赵烨 基于Ka4-70桨型的轮缘推进器水动力性能分析[J]. 船舶工程, 2023, 45 (12): 75- 83,93 CHEN Zhenwei, ZHOU Zhaoye Hydrodynamic blade design and analysis of rim-driven thruster based on Ka4-70 propeller[J]. Ship Engineering, 2023, 45 (12): 75- 83,93
|
| 10 |
HOU L X, HU A K, WANG S Energy saving performance analysis of contra-rotating azimuth propulsor. Part 2: optimal matching investigation in model scale[J]. Applied Ocean Research, 2019, 88: 29- 36
doi: 10.1016/j.apor.2019.04.016
|
| 11 |
HU J, ZHAO W, CHEN C G, et al Numerical simulation on the hydrodynamic performance of an azimuthing pushing podded propulsor in reverse flow and rotation[J]. Applied Ocean Research, 2020, 104: 102338
doi: 10.1016/j.apor.2020.102338
|
| 12 |
张文璨, 董国祥, 陈伟民 全回转推进器多偏转角工况水动力性能研究[J]. 上海船舶运输科学研究所学报, 2017, 40 (1): 6- 15 ZHANG Wencan, DONG Guoxiang, CHEN Weimin Research on hydrodynamic performance of azimuth thruster under multiple turning-angle working conditions[J]. Journal of Shanghai Ship and Shipping Research Institute, 2017, 40 (1): 6- 15
|
| 13 |
AKINTURK A, ISLAM M F, VEITCH B, et al Performance of dynamic azimuthing podded propulsor[J]. International Shipbuilding Progress, 2012, 59 (1/2): 83- 106
|
| 14 |
陈帅, 王靖凯, 刘国增, 等 动力定位船舶推进器的偏置组合设置[J]. 江苏船舶, 2023, 40 (5): 45- 46,60 CHEN Shuai, WANG Jingkai, LIU Guozeng, et al Bias combination setting of dynamic positioning ship propulsion[J]. Jiangsu Ship, 2023, 40 (5): 45- 46,60
|
| 15 |
REICHEL M Equivalent standard manoeuvres for pod-driven ships[J]. Ocean Engineering, 2019, 187: 106165
doi: 10.1016/j.oceaneng.2019.106165
|
| 16 |
ZHANG G. Azimuth thruster single lever type remote control system [M]// Fundamental design and automation technologies in offshore robotics. Amsterdam: Elsevier, 2020: 77–89. [LinkOut]
|
| 17 |
黄喆. 吊舱回转液压系统的设计与仿真研究 [D]. 大连: 大连海事大学, 2015. HUANG Zhe. The design and simulation research of slewing hydraulic system on podded propulsion [D]. Dalian: Dalian Maritime University, 2015.
|
| 18 |
WU T, LI R, CHEN Q, et al A numerical study on modeling ship maneuvering performance using twin azimuth thrusters[J]. Journal of Marine Science and Engineering, 2023, 11 (11): 2167
doi: 10.3390/jmse11112167
|
| 19 |
SONG B W, WANG Y J, TIAN W L Open water performance comparison between hub-type and hubless rim driven thrusters based on CFD method[J]. Ocean Engineering, 2015, 103: 55- 63
doi: 10.1016/j.oceaneng.2015.04.074
|
| 20 |
WU T, LI R, CHEN Q, et al A numerical study on modeling ship maneuvering performance using twin azimuth thrusters[J]. Journal of Marine Science and Engineering, 2023, 11 (11): 2167
doi: 10.3390/jmse11112167
|
| 21 |
FENG X, FANG J, LIN Y, et al. Coupled aero-hydro-mooring dynamic analysis of floating offshore wind turbine under blade pitch motion [J]. Physics of Fluids, 2023, 35(4).
|
| 22 |
LIN Y, DAI F, SONG J, et al Simulation studies around the steering system of the azimuthing propulsor[J]. Ocean Engineering, 2022, 264: 112512
doi: 10.1016/j.oceaneng.2022.112512
|
| 23 |
吴晓明, 高殿荣. 液压变量泵(马达)变量调节原理与应用 [M]. 第 2版. 北京: 机械工业出版社, 2018.
|
| 24 |
CAD/CAM/CAE技术联盟. ADAMS 2018动力学分析与仿真从入门到精通 [M]. 北京: 清华大学出版社, 2020.
|
| 25 |
李增刚, 李保国. ADAMS入门详解与实例 [M]. 3版. 北京: 清华大学出版社, 2021.
|
| 26 |
张秀梅. 液压系统建模与仿真 [M]. 北京: 清华大学出版社, 2019.
|
| 27 |
ZHANG W, YUAN Q, XU Y, et al Research on control strategy of electro-hydraulic lifting system based on AMESim and MATLAB[J]. Symmetry, 2023, 15 (2): 435
doi: 10.3390/sym15020435
|
| 28 |
LIN Y, DAI F, LIU H, et al Design and control of the mechanical-hydraulic hybrid transmission system in wind turbines[J]. Mechatronics, 2024, 99: 103137
doi: 10.1016/j.mechatronics.2024.103137
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|