Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 191-198    DOI: 10.3785/j.issn.1008-973X.2026.01.018
能源与动力工程     
变负载下大功率船舶全回转推进器水动及液控仿真
何浩1(),舒永东2,3,林勇刚2,*(),代富全2,张举2
1. 武汉船用机械有限责任公司,湖北 武汉 430080
2. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
3. 南京高精船用设备有限公司,江苏 南京 211103
hydrodynamic and hydraulic-control simulation of high-power ship azimuth thruster under variable load
Hao HE1(),Yongdong SHU2,3,Yonggang LIN2,*(),Fuquan DAI2,Ju ZHANG2
1. Wuhan Marine Machinery Plant Co. Ltd, Wuhan 430080, China
2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
3. Nanjing High Accurate Marine Equipment Co. Ltd, Nanjing 211103, China
 全文: PDF(2489 KB)   HTML
摘要:

为了进一步指导大功率全回转推进器回转系统的设计制造,从负载计算、系统设计、仿真控制到样机测试各个方面对大功率回转推进器的回转液压驱动系统进行研究. 使用水动力仿真研究方法,得到全回转推进器不同进速系数下不同回转角度下的回转负载力矩,通过与敞水实验结果的对比证明了仿真的正确性和合理性,并总结出回转负载力矩波动频率与浆叶转速的关系;根据回转负载设计单泵三马达闭式液压转舵系统,同时考虑机械系统齿轮啮合与液压系统压力波动,使用AMESIM和Adams搭建联合仿真模型,通过速度PID反馈控制实现推进器180°回转. 频谱分析结果表明,负载的波动严重影响了传动系统内部的齿轮啮合力及液压系统压力. 通过实船试验验证了系统设计和仿真控制的合理性.

关键词: 全回转推进器水动力仿真液压转舵系统联合仿真反馈控制    
Abstract:

The hydraulic steering drive system of the high-power azimuth thruster was studied from load calculation, system design, simulation control to prototype test, in order to further guide the design and manufacture of the high-power azimuth thruster steering system. The hydrodynamic simulation method was used to obtain the steering load moment of the azimuth thruster under different advance coefficients and different steering angles. The validity and rationality of the hydrodynamic simulation were proved by comparing with the results of the open water experiment. The relationship between the fluctuation frequency of steering load moment and propeller blade rotation speed was summarized. A single-pump three-motor closed hydraulic steering system was designed according to the steering load. Considering the gear meshing of the mechanical system and the pressure fluctuation of the hydraulic system, a co-simulation model was built using AMESIM and ADAMS. The 180° rotation of the thruster was realized by speed PID feedback control. Through spectrum analysis, it was found that the load fluctuation seriously affected the gear meshing force and the hydraulic pressure inside the transmission system. Finally, the rationality of the system design and simulation control was verified by the real ship test.

Key words: azimuth thruster    hydrodynamic simulation    hydraulic steering system    co-simulation    feedback control
收稿日期: 2024-12-19 出版日期: 2025-12-15
:  TP 393  
基金资助: 国家重点研发计划“高性能制造技术与重大装备”重点专项资助项目(2022YFB3404804);江苏省科技成果转化专项资金项目(BA2023019).
通讯作者: 林勇刚     E-mail: 515612258@qq.com;yglin@zju.edu.cn
作者简介: 何浩(1986—),男,高级工程师,从事船舶动力研究. orcid.org/0009-0001-4984-1869. E-mail:515612258@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何浩
舒永东
林勇刚
代富全
张举

引用本文:

何浩,舒永东,林勇刚,代富全,张举. 变负载下大功率船舶全回转推进器水动及液控仿真[J]. 浙江大学学报(工学版), 2026, 60(1): 191-198.

Hao HE,Yongdong SHU,Yonggang LIN,Fuquan DAI,Ju ZHANG. hydrodynamic and hydraulic-control simulation of high-power ship azimuth thruster under variable load. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 191-198.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.018        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/191

图 1  全回转推进器流场仿真网格图
网格MJ
静止域大旋转域小旋转域
初始网格57476795911112777960.3362
网格1689721115093215333550.3358
网格2827665138111918400260.3361
表 1  网格独立性测试 (J=0.4)
图 2  进速系数J=0.2时的流场速度变化
图 3  进速系数J=0.4时的流场速度变化
图 4  进速系数J=0.6时的流场速度变化
图 5  Akintur敞水实验[13]的回转负载系数
图 6  CFD仿真得到的不同进速系数下的回转负载
图 7  液压转舵系统原理图
特性参数数值
材料40 Cr
密度/( kg·m?3)7850
弹性模量/ GPa207
泊松比0.29
刚度系数/( N·mm?1)1×105
阻尼系数/( N·s·mm?1)50
表 2  ADAMS齿轮参数
基本参数数值
马达排量/( mL·r?1)151.8
液压泵排量/( mL·r?1)646.6
补油泵排量/( mL·r?1)100
液压油体积弹性模量/Pa6.9×108
补油泵补油压力/(105 Pa)20
系统最高压力/(105 Pa)250
冲洗溢流阀压力/(105 Pa)17
表 3  AMEsim液压系统参数
图 8  全回转推进器的回转系统联合仿真模型
控制器类型KpTiTd
P0.50Kps
PI0.45Kps0.83Ts
PID0.60Kps0.50Ts0.125Ts
表 4  临界增益法整定PID参数
图 9  180°回转过程系统参数变化
图 10  齿轮啮合力和液压系统压力的频率分析图
图 11  全回转推进器样机
图 12  推进器回转角度变化
图 13  液压泵体积流量变化
1 WU T, LI R, CHEN Q, et al A numerical study on modeling ship maneuvering performance using twin azimuth thrusters[J]. Journal of Marine Science and Engineering, 2023, 11 (11): 2167
doi: 10.3390/jmse11112167
2 邹康, 桂满海, 赖明雁 三吊舱船舶尾部附体对性能影响与螺旋桨功率不平衡分析[J]. 船海工程, 2023, 52 (6): 54- 59
ZOU Kang, GUI Manhai, LAI Mingyan Influence of appendages upon performance and propellers power imbalance analysis of a vessel with triple pods[J]. Ship and Ocean Engineering, 2023, 52 (6): 54- 59
3 唐文彪, 张聪, 欧阳武, 等 大型船舶吊舱推进器发展现状[J]. 舰船科学技术, 2020, 42 (7): 8- 12
TANG Wenbiao, ZHANG Cong, OUYANG Wu, et al Development status of large-scale ship pod propeller[J]. Ship Science and Technology, 2020, 42 (7): 8- 12
4 郑安宾, 许汪歆, 梁金雄, 等 吊舱式电力推进应用及发展[J]. 机电设备, 2022, 39 (5): 4- 8
ZHENG Anbin, XU Wangxin, LIANG Jinxiong, et al Application and development of podded electric propulsion[J]. Mechanical and Electrical Equipment, 2022, 39 (5): 4- 8
5 舒永东, 凌宏杰, 林勇刚, 等 全回转吊舱推进器动态转舵力矩数值预报研究[J]. 中国造船, 2024, 65 (1): 123- 132
SHU Yongdong, LING Hongjie, LIN Yonggang, et al Research on predicting dynamic rudder torque of fully rotating pod thruster[J]. Shipbuilding of China, 2024, 65 (1): 123- 132
6 中国船舶七〇四所研制10兆瓦大功率吊舱推进器取得重大突破 [EB/OL]. [2025-01-23]. https://www.csic.com.cn/n135/n171/n179/c29924/content.html
7 李祥光, 管义锋, 刘志伟, 等 基于STAR-CCM+的无轴轮缘推进器水动力性能分析[J]. 舰船科学技术, 2023, 45 (22): 50- 55
LI Xiangguang, GUAN Yifeng, LIU Zhiwei, et al Simulation of hydrodynamic performance of shaftless rim-driven thruster based on STAR-CCM[J]. Ship Science and Technology, 2023, 45 (22): 50- 55
8 张敏革, 韩光哲, 武天龙, 等 定子叶片对推进器水动力性能影响分析[J]. 舰船科学技术, 2023, 45 (23): 31- 38
ZHANG Minge, HAN Guangzhe, WU Tianlong, et al Influence analysis of stator blade on hydrodynamic performance of propeller[J]. Ship Science and Technology, 2023, 45 (23): 31- 38
9 陈振纬, 周赵烨 基于Ka4-70桨型的轮缘推进器水动力性能分析[J]. 船舶工程, 2023, 45 (12): 75- 83,93
CHEN Zhenwei, ZHOU Zhaoye Hydrodynamic blade design and analysis of rim-driven thruster based on Ka4-70 propeller[J]. Ship Engineering, 2023, 45 (12): 75- 83,93
10 HOU L X, HU A K, WANG S Energy saving performance analysis of contra-rotating azimuth propulsor. Part 2: optimal matching investigation in model scale[J]. Applied Ocean Research, 2019, 88: 29- 36
doi: 10.1016/j.apor.2019.04.016
11 HU J, ZHAO W, CHEN C G, et al Numerical simulation on the hydrodynamic performance of an azimuthing pushing podded propulsor in reverse flow and rotation[J]. Applied Ocean Research, 2020, 104: 102338
doi: 10.1016/j.apor.2020.102338
12 张文璨, 董国祥, 陈伟民 全回转推进器多偏转角工况水动力性能研究[J]. 上海船舶运输科学研究所学报, 2017, 40 (1): 6- 15
ZHANG Wencan, DONG Guoxiang, CHEN Weimin Research on hydrodynamic performance of azimuth thruster under multiple turning-angle working conditions[J]. Journal of Shanghai Ship and Shipping Research Institute, 2017, 40 (1): 6- 15
13 AKINTURK A, ISLAM M F, VEITCH B, et al Performance of dynamic azimuthing podded propulsor[J]. International Shipbuilding Progress, 2012, 59 (1/2): 83- 106
14 陈帅, 王靖凯, 刘国增, 等 动力定位船舶推进器的偏置组合设置[J]. 江苏船舶, 2023, 40 (5): 45- 46,60
CHEN Shuai, WANG Jingkai, LIU Guozeng, et al Bias combination setting of dynamic positioning ship propulsion[J]. Jiangsu Ship, 2023, 40 (5): 45- 46,60
15 REICHEL M Equivalent standard manoeuvres for pod-driven ships[J]. Ocean Engineering, 2019, 187: 106165
doi: 10.1016/j.oceaneng.2019.106165
16 ZHANG G. Azimuth thruster single lever type remote control system [M]// Fundamental design and automation technologies in offshore robotics. Amsterdam: Elsevier, 2020: 77–89. [LinkOut]
17 黄喆. 吊舱回转液压系统的设计与仿真研究 [D]. 大连: 大连海事大学, 2015.
HUANG Zhe. The design and simulation research of slewing hydraulic system on podded propulsion [D]. Dalian: Dalian Maritime University, 2015.
18 WU T, LI R, CHEN Q, et al A numerical study on modeling ship maneuvering performance using twin azimuth thrusters[J]. Journal of Marine Science and Engineering, 2023, 11 (11): 2167
doi: 10.3390/jmse11112167
19 SONG B W, WANG Y J, TIAN W L Open water performance comparison between hub-type and hubless rim driven thrusters based on CFD method[J]. Ocean Engineering, 2015, 103: 55- 63
doi: 10.1016/j.oceaneng.2015.04.074
20 WU T, LI R, CHEN Q, et al A numerical study on modeling ship maneuvering performance using twin azimuth thrusters[J]. Journal of Marine Science and Engineering, 2023, 11 (11): 2167
doi: 10.3390/jmse11112167
21 FENG X, FANG J, LIN Y, et al. Coupled aero-hydro-mooring dynamic analysis of floating offshore wind turbine under blade pitch motion [J]. Physics of Fluids, 2023, 35(4).
22 LIN Y, DAI F, SONG J, et al Simulation studies around the steering system of the azimuthing propulsor[J]. Ocean Engineering, 2022, 264: 112512
doi: 10.1016/j.oceaneng.2022.112512
23 吴晓明, 高殿荣. 液压变量泵(马达)变量调节原理与应用 [M]. 第 2版. 北京: 机械工业出版社, 2018.
24 CAD/CAM/CAE技术联盟. ADAMS 2018动力学分析与仿真从入门到精通 [M]. 北京: 清华大学出版社, 2020.
25 李增刚, 李保国. ADAMS入门详解与实例 [M]. 3版. 北京: 清华大学出版社, 2021.
26 张秀梅. 液压系统建模与仿真 [M]. 北京: 清华大学出版社, 2019.
27 ZHANG W, YUAN Q, XU Y, et al Research on control strategy of electro-hydraulic lifting system based on AMESim and MATLAB[J]. Symmetry, 2023, 15 (2): 435
doi: 10.3390/sym15020435
28 LIN Y, DAI F, LIU H, et al Design and control of the mechanical-hydraulic hybrid transmission system in wind turbines[J]. Mechatronics, 2024, 99: 103137
doi: 10.1016/j.mechatronics.2024.103137
[1] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[2] 陈浩,王新杰,王炅,席占稳,曹云. 基于克里金模型的微电热驱动器优化设计[J]. 浙江大学学报(工学版), 2020, 54(8): 1490-1496.
[3] 张雷,徐海军,邹腾安,徐小军,常雨康. 嵌套Z轴式水下矢量推进系统建模与特性分析[J]. 浙江大学学报(工学版), 2020, 54(3): 450-458.
[4] 吴海东,司振立. 基于线性矩阵不等式的智能车轨迹跟踪控制[J]. 浙江大学学报(工学版), 2020, 54(1): 110-117.
[5] 陈玉羲,龚国芳,石卓,杨华勇. 基于施工数据的TBM支撑推进协调控制系统[J]. 浙江大学学报(工学版), 2019, 53(2): 250-257.
[6] 李劲林, 王佳斌, 何闻. 非接触式定位隔振平台机电联合仿真分析[J]. 浙江大学学报(工学版), 2019, 53(1): 146-157.
[7] 赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报(工学版), 2018, 52(8): 1467-1473.
[8] 郑鹏远, 王针针, 相振东, 冯冬涵. 线性参数时变可测系统的混合反馈预测控制[J]. 浙江大学学报(工学版), 2018, 52(4): 703-709.
[9] 李明达,隗海林,门玉琢,包翠竹. 基于实际换挡规律的卡车列队行驶起步控制[J]. 浙江大学学报(工学版), 2016, 50(5): 887-892.
[10] 郝钏钏, 方舟, 李平. 基于参考模型的输出反馈强化学习控制[J]. J4, 2013, 47(3): 409-414.
[11] 吴志军, 朱绍鹏, 刘孝龙, 邱斌斌. 电动全地形车动力性及乘坐舒适性分析[J]. J4, 2013, 47(12): 2227-2233.
[12] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[13] 林小夏,张树有,陈婧,赵振. 多体动力学与有限元联合仿真的时变载荷历程模型[J]. J4, 2011, 45(9): 1643-1649.
[14] 王建中, 金波, 鲁仁全. 基于渗漏模型的城市排水系统建模与分析[J]. J4, 2010, 44(7): 1382-1386.
[15] 王俊宏, 薛安克. 测量值量化的时滞系统的输出反馈控制[J]. J4, 2010, 44(7): 1418-1422.