Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 703-709    DOI: 10.3785/j.issn.1008-973X.2018.04.013
自动化技术     
线性参数时变可测系统的混合反馈预测控制
郑鹏远1, 王针针1, 相振东1, 冯冬涵2
1. 上海电力学院 自动化工程学院, 上海 200090;
2. 上海交通大学 电力传输与功率变换控制教育部重点实验室, 上海 200240
Mixed multi-step feedback model predictive control for linear varying systems with measurable parameters
ZHENG Peng-yuan1, WANG Zhen-zhen1, XIANG Zhen-dong1, FENG Dong-han2
1. College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
2. Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1670 KB)   HTML
摘要:

针对参数可测的线性参数时变(LPV)系统,通过综合增益调度控制思想和多步控制集方法,设计鲁棒反馈预测控制器.借鉴增益调度控制扩大设计自由度,改善系统控制性能的优点,设计基于增益调度控制和普通反馈控制律序列的多步混合反馈预测控制策略.在首步椭圆集采用增益调度控制律,有效地利用可测的参数信息提高系统控制性能;在余下的椭圆集系列采用多步控制律,降低在线优化算法的计算量,在控制性能和计算负担之间进行有效平衡.利用该混合反馈预测控制器可以有效地利用当前可测的参数信息,且以较低的在线计算量取得了较优的控制性能.仿真结果验证了该方法的有效性.

Abstract:

A mixed feedback robust model predictive control (RMPC) approach was developed based on multi-step control sets and scheduling control for linear parameter varying (LPV) systems with the varying parameters measurable. The mixed feedback RMPC consists of a feedback control sequence and the parameter-dependent control, which has the merits of enlarged freedom of design and improved control performance. A parameter-dependent feedback control was applied to utilize the information on parameter value and enhance the control performance for the first step in the ellipsoid sets. A single feedback control was adopted to reduce the computational burden and achieve balance between the computational burden and the control performance for the remained ellipsoid sets. The proposed method achieved high control performance with lower on-line computational burden through use of the measured value of varying parameter. The effectiveness of the proposed approach was validated by a simulation.

收稿日期: 2016-12-24
CLC:  TP273  
基金资助:

国家自然科学基金资助项目(61573239,51477097);上海市自然科学基金资助项目(15ZR1418600,16ZR1446700);系统控制与信息处理教育部重点实验室开放课题资助项目(Scip201509);上海市科委地方院校能力建设项目(15160500800).

作者简介: 郑鹏远(1975-),男,副教授,博士后,从事预测控制优化理论的研究.orcid.org/0000-0003-2138-291X.E-mail:pyzheng@shiep.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

郑鹏远, 王针针, 相振东, 冯冬涵. 线性参数时变可测系统的混合反馈预测控制[J]. 浙江大学学报(工学版), 2018, 52(4): 703-709.

ZHENG Peng-yuan, WANG Zhen-zhen, XIANG Zhen-dong, FENG Dong-han. Mixed multi-step feedback model predictive control for linear varying systems with measurable parameters. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 703-709.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.013        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/703

[1] 席裕庚, 李德伟, 林姝. 模型预测控制:现状与挑战[J]. 自动化学报, 2013, 39(3):222-236. XI Yu-geng, LI De-wei, LIN Shu. Model predictive control:status and challenges[J]. Acta Automatica Sinica, 2013, 39(3):222-236.
[2] MAYNE D Q. Model predictive control:recent developments and future promise[J]. Automatica, 2014, 50(12):2967-2986.
[3] GOODWIN G C, KONG H, MIRZAEVA G, et al. Robust model predictive control:reflections and opportunities[J]. Journal of Control and Decision, 2014, 1(2):115-148.
[4] MARTINS M A F, ODLOAK D. A robustly stabilizing model predictive control strategy of stable and unstable processes[J]. Automatica, 2016, 67(5):132-143.
[5] 何德峰,丁宝苍,于树友. 非线性系统模型预测控制若干基本特点与主题回顾[J]. 控制理论与应用, 2013, 30(3):273-287. HE De-feng, DING Bao-cang, YU Shu-you. Review of fundamental properties and topics of model predictive control for nonlinear systems[J]. Control Theory and Applications, 2013, 30(3):273-287.
[6] KOTHARE M V, BALAKRISHNAN V, MORARI M. Robust constrained model predictive control using linear matrix inequalities[J]. Automatica, 1996, 32(10):1361-1379.
[7] CUZZOLA F A, GEROMEL J C, MORARI M. An improved approach for constrained robust model predictive control[J]. Automatica, 2002, 38(7):1183-1189.
[8] WAN Zhao-yang, KOTHARE M V. Efficient robust constrained model predictive control with a time varying terminal constraint set[J]. Systems and Control Letters, 2003, 48(5):375-383.
[9] LI De-wei, XI Yu-geng, GAO Fu-rong. Synthesis of dynamic output feedback RMPC with saturated inputs[J]. Automatica, 2013, 49(4):949-954.
[10] LI De-wei, GAO Fu-rong, XI Yu-geng. Separated design of robust model predictive control for LPV systems with periodic disturbance[J]. Journal of Process Control, 2014, 24(1):250-260.
[11] HUANG He, LI De-wei, LIN Zong-li, et al. An improved robust model predictive control design in the presence of actuator saturation[J]. Automatica, 2011, 47(4):861-864.
[12] DING Bao-cang, HUANG Biao, XU Fang-wei. Dynamic output feedback robust model predictive control[J]. International Journal of Systems Science, 2011, 42(10):1669-1682.
[13] YU Shu-you, BOHM C, CHEN Hong, et al. Model predictive control of constrained LPV systems[J]. International Journal of Control, 2012, 85(6):671-683.
[14] WANG H O, TANAKA K, GRIFFIN M F. An approach to fuzzy control of nonlinear systems:stability and design issues[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(1):14-23.
[15] HE De-feng, HUANG Hua, CHEN Qiu-xia. Quasi-min-max MPC for constrained nonlinear systems with guaranteed input-to-state stability[J]. Journal of the Franklin Institute, 2014, 351(6):3405-3423.
[16] 黄骅,何德峰,俞立. 基于多面体描述系统的鲁棒非线性预测控制[J]. 自动化学报, 2012, 38(12):1906-1912. HUANG Hua, HE De-feng, YU Li. Robust nonlinear predictive control based on polytopic description systems[J]. Acta Automatica Sinica, 2012, 38(12):1906-1912.
[17] DING Bao-cang, XI Yu-geng, LI Shao-yuan. A synthesis approach of on-line constrained robust model predictive control[J]. Automatica, 2004, 40(1):163-167.
[18] LI De-wei, XI Yu-geng. Design of robust model predictive control based on multi-step control set[J]. ACTA Automatica Sinica, 2009, 35(4):433-437.
[19] ZHENG Peng-yuan, LI De-wei, XI Yu-geng, et al. A sophisticated RMPC design for LPV systems based on the mixed multi-step feedback control[C]//The 34th Chinese Control Conference. Hangzhou:IEEE, 2015:4119-4123.
[20] PARK J H, KIM T H, SUGIE T. Output feedback model predictive control for LPV systems based on quasi-min-max algorithm[J]. Automatica, 2011, 47(9):2052-2058.
[21] SU Yang, TAN K K. Comments on "output feedback model predictive control for LPV systems based on quasi-min-max algorithm"[J]. Automatica, 2012, 48(9):2385.
[22] 平续斌,丁宝苍, 韩崇昭. 动态输出反馈鲁棒模型预测控制[J]. 自动化学报, 2012, 38(1):31-37. PING Xu-bin, DING Bao-cang, HAN Chong-zhao. Dynamic output feedback robust model predictive control[J]. Acta Automatica Sinica, 2012, 38(1):31-37.
[23] ZHENG Peng-yuan, LI De-wei, XI Yu-geng. Constrained feedback RMPC for LPV systems with bounded rates of parameter variations and measurement errors[J]. International Journal of System Control and Information Processing, 2012, 1(2):164-175.
[24] JUNGERS M, OLIVEIRA R, PERES P. MPC for LPV systems with bounded parameter variations[J]. International Journal of Control, 2011, 84(1):24-36.
[25] ZHENG Peng-yuan, LI De-wei, XI Yu-geng, et al. Improved future model prediction and robust MPC design for LPV systems with bounded rates of parameter variations[C]//The 9th Asian Control Conference. Istanbul:IEEE, 2013:1-6.
[26] ZHENG Peng-yuan, LI De-wei, XI Yu-geng, et al. Improved model prediction and RMPC design for LPV systems with bounded parameter changes[J]. Automatica, 2013, 49(12):3695-3699.

[1] 赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报(工学版), 2018, 52(8): 1467-1473.
[2] 劳立明, 陈英龙, 赵玉刚, 周华. 跟踪微分器的等效线性分析及优化[J]. 浙江大学学报(工学版), 2018, 52(2): 224-232.
[3] 朱笑花, 王宁. cRNA布谷鸟搜索算法的桥式吊车PID控制[J]. 浙江大学学报(工学版), 2017, 51(7): 1397-1404.
[4] 朱上上, 罗仕鉴, 应放天, 何基. 支持产品视觉识别的产品族设计DNA[J]. J4, 2010, 44(4): 715-721.
[5] 罗仕鉴, 翁建广, 陈实, 等. 基于情境的产品族设计风格DNA[J]. J4, 2009, 43(6): 1112-1117.
[6] 侯鑫, 李平, 韩波, 等. 小型无人直升机分层混杂控制系统[J]. J4, 2009, 43(5): 796-800.
[7] 王晔, 刘山. 期望轨迹可变的非线性时变系统迭代学习控制[J]. J4, 2009, 43(5): 839-843.