Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (1): 146-157    DOI: 10.3785/j.issn.1008-973X.2019.01.016
机械工程     
非接触式定位隔振平台机电联合仿真分析
李劲林1, 王佳斌2, 何闻1
1. 浙江大学 浙江省先进制造技术重点实验室, 浙江 杭州 310027;
2. 上海卫星装备研究所, 上海 200240
Electromechanical co-simulation analysis for contactless positioning and vibration isolation platform
LI Jin-lin1, WANG Jia-bin2, HE Wen1
1. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;
2. Shanghai Institute of Satellite Equipment, Shanghai 200240, China
 全文: PDF(1863 KB)   HTML
摘要:

为了研究工作于空间微重力环境的非接触式定位隔振平台的工作性能,利用机电联合仿真方法对平台的6自由度定位和微振动隔振功能进行仿真分析. 介绍所设计非接触式定位隔振平台的工作原理,其中平台的激励单元、位置测量单元和加速度测量单元分别利用非接触式二轴作动器、二维位置敏感探测器和单轴加速度计根据空间对称布置方案构成,并基于位置和加速度反馈设计平台控制器. 利用ADAMS和MATLAB/Simulink,分别建立平台的机械系统仿真模型和基于位置与加速度反馈的闭环控制系统仿真模型,获得平台的机电一体化联合仿真模型. 利用所建立的联合仿真模型,对平台的定位和隔振性能进行仿真分析. 结果显示,在小范围定位模式下,所设计平台的6自由度位移和角位移控制误差分别小于10 μm和2×10-5 rad;在隔振模式下,平台在6自由度方向对0.01~1 Hz正弦直接振动干扰的抑制效率为39~73 dB,对1~100 Hz正弦直接干扰的抑制效率为19~73 dB,在隔振控制过程中浮台与基台的相对位移小于1 mm.

Abstract:

The electromechanical co-simulation method was used to simulate and analyze the 6-DOF (degrees of freedom) positioning and micro-vibration isolation functions of the platform in order to analyze the working performances of a contactless positioning and vibration isolation platform which works at space microgravity environment. The working principle of the contactless positioning and vibration isolation platform was introduced. The exciting unit, position measuring unit and acceleration measuring unit of the platform were made up by contactless biaxial actuators, biaxial position sensitive detectors and uniaxial accelerometers according to space symmetry layout scheme. The controller of the platform was designed based on position and acceleration feedback. Then the mechanical system simulation model and the closed-loop control system simulation model based on position and acceleration feedback was established by ADAMS and MATLAB/Simulink, respectively, which together set up the electromechanical co-simulation model of the platform. The positioning and vibration isolation performances of the platform were simulated by the co-simulation model. Results show that the 6-DOF displacement and angular displacement control errors of the platform are less than 10 μm and 2×10-5 rad respectively under small range positioning mode. The suppression efficiencies of the platform for 6-DOF direct sinusoidal disturbances with frequency range of 0.01-1 Hz and 1-100 Hz are 39-73 dB and 19-73 dB, respectively. The relative displacements between the floater and the stator are less than 1 mm during vibration isolation control process under vibration isolation mode.

收稿日期: 2018-03-01 出版日期: 2019-01-07
CLC:  TB535  
基金资助:

国家自然科学基金创新研究群体资助项目(51221004);国家重点研发计划资助项目(2016YFB0500803);国家重大科学仪器设备开发专项资金资助项目(2013YQ470765)

通讯作者: 何闻,男,教授.orcid.org/0000-0001-9089-3241.     E-mail: hewens@zju.edu.cn
作者简介: 李劲林(1990-),男,博士生,从事精密振动控制研究.orcid.org/0000-0002-1811-8432.E-mail:jimlinlee@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李劲林, 王佳斌, 何闻. 非接触式定位隔振平台机电联合仿真分析[J]. 浙江大学学报(工学版), 2019, 53(1): 146-157.

LI Jin-lin, WANG Jia-bin, HE Wen. Electromechanical co-simulation analysis for contactless positioning and vibration isolation platform. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 146-157.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.01.016        http://www.zjujournals.com/eng/CN/Y2019/V53/I1/146

[1] 张振华,杨雷,庞世伟. 高精度航天器微振动力学环境分析[J]. 航天器环境工程, 2009, 26(6):528-534 ZHANG Zhen-hua, YANG Lei, PANG Shi-wei. Jitter environment analysis for micro-precision spacecraft[J]. Spacecraft Environment Engineering, 2009, 26(6):528-534
[2] 徐道临,赵智,周加喜. 气动可调式准零刚度隔振器设计及特性分析[J]. 湖南大学学报:自然科学版, 2013, 40(6):47-52 XU Dao-lin, ZHAO Zhi, ZHOU Jia-xi. Design and analysis of an adjustable pneumatic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Hunan University:Natural Sciences, 2013, 40(6):47-52
[3] HUANG X C, ZHANG Z G, SUN J Y, et al. Analytical stiffness model of a fluid-filled U-shaped bellows based three-parameter fluid damper for micro-vibration suppression[J]. Aerospace Science and Technology, 2017, 69:357-369.
[4] 刘乃军,牛军川. 2-PRC-PR(C)并联机构减振平台及其动力学特性[J]. 中南大学学报:自然科学版, 2017, 48(4):925-935 LIU Nai-jun, NIU Jun-chuan. 2-PRC-PR(C) parallel mechanism platform for vibration isolation and its dynamics[J]. Journal of Central South University:Science and Technology, 2017, 48(4):925-935
[5] LEE D O, PARK G, HAN J H. Experimental study on on-orbit and launch environment vibration isolation performance of a vibration isolator using bellows and viscous fluid[J]. Aerospace Science and Technology, 2015, 45:1-9.
[6] LEE D O, PARK G, HAN J H. Hybrid isolation of micro vibrations induced by reaction wheels[J]. Journal of Sound and Vibration, 2016, 363:1-17.
[7] WANG C X, CHEN Y H, ZHANG Z Y. Simulation and experiment on the performance of a passive/active micro-vibration isolator[J]. Journal of Vibration and Control, 2018, 24(3):453-465.
[8] LI W P, HUANG H, ZHOU X B, et al. Design and experiments of an active isolator for satellite micro-vibration[J]. Chinese Journal of Aeronautics, 2014, 27(6):1461-1468.
[9] DEFENDINI A, VAILLON L, TROUVE F, et al. Technology predevelopment for active control of vibration and very high accuracy pointing systems[C]//Proceedings of the 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems. Noordwijk:[s.n.], 1999:385-391.
[10] SANNIBALE V, ORTIZ G G, FARR W H. A sub-hertz vibration platform for a deep space optical communication transceiver[C]//Proceedings of Volume 7199, Free-Space Laser Communication Technologies XXI. San Jose:SPIE, 2009.
[11] LUO Q, LI D X, JIANG J P. Analysis and optimization of microvibration isolation for multiple flywheel systems of spacecraft[J]. AIAA Journal, 2016, 54(5):1719-1731.
[12] WU Y, YU K P, JIAO J, et al. Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties[J]. Mechanism and Machine Theory, 2015, 92:407-435.
[13] KONG Y F, HUANG H. Vibration isolation and dual-stage actuation pointing system for space precision payloads[J]. Acta Astronautica, 2018, 143:183-192.
[14] 刘勺斌,杨洪波,刘洋,等. 基于Stewart平台的空间光学仪器主动隔振系统研究[J]. 噪声与振动控制, 2008, 28(2):10-13 LIU Shao-bin, YANG Hong-bo, LIU Yang, et al. Study on an active vibration isolation system for spaceborne optical instrument based on Stewart platform[J]. Noise and Vibration Control, 2008, 28(2):10-13
[15] YANG J F, XU Z B, WU Q W, et al. Dynamic modeling and control of a 6-DOF micro-vibration simulator[J]. Mechanism and Machine Theory, 2016, 104:350-369.
[16] 钱承,鄂加强,刘明,等. Stewart 6自由度并联平台动力学模型振动分析[J]. 湖南大学学报:自然科学版, 2016, 43(2):36-42 QIAN Cheng, E Jia-qiang, LIU Ming, et al. Vibration analysis of the dynamic model of Stewart platform with six degrees of freedom[J]. Journal of Hunan University:Natural Sciences, 2016, 43(2):36-42
[17] GRODSINSKY C M, WHORTON M S. Survey of active vibration isolation systems for microgravity applications[J]. Journal of Spacecraft and Rockets, 2000, 37(5):586-596.
[18] KIN Y K, WHORTON M S. Equations of motion for the g-LIMIT microgravity vibration isolation system[R]. Huntsville, Alabama:Marshall Space Flight Center, NASA/TM-2001-211301.
[19] ZHANG Y K, DONG W B, LIU W, et al. Verification of the microgravity active vibration isolation system based on parabolic flight[J]. Microgravity Science and Technology, 2017, 29(6):415-426.
[20] WU Q Q, YUE H H, LIU R Q, et al. Simulation of multi-closed loop control with feed forward control of micro-vibration isolation platform[C]//Proceeding of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal:ASME, 2014.
[21] YU Y P, CHEN S Q, WANG Y. Cascade active disturbance rejection optimal control for microgravity active vibration isolation system[C]//201732nd Youth Academic Annual Conference of Chinese Association. Hefei:IEEE, 2017:602-607.
[22] YUN Y, WANG L, ZHANG B, et al. Design, experiments and multidisciplinary optimization of 2 degrees-of-freedom electromagnetic actuator for application in space vibration isolation[J]. Advances in Mechanical Engineering, 2017, 9(12):1-15.
[23] SUN X Q, YANG B T, ZHAO L, et al. Optimal design and experimental analyses of a new micro-vibration control payload-platform[J]. Journal of Sound and Vibration, 2016, 374:43-60.
[24] ZHANG X Y, DING X, WU D, et al. A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams[J]. Review of Scientific Instruments, 2016, 87(6):066106.
[25] STABILE A, AGLIETTI G S, RICHARDSON G, et al. Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration[J]. Journal of Sound and Vibration, 2017, 386:38-49.
[26] 齐乃明,张文辉,高九州,等. 空间微重力环境地面模拟试验方法综述[J]. 航天控制, 2011, 29(3):95-100 QI Nai-ming, ZHANG Wen-hui, GAO Jiu-zhou, et al. The primary discussion for the ground simulation system of spatial microgravity[J]. Aerospace Control, 2011, 29(3):95-100
[27] 沈建. 动量飞轮隔振平台性能仿真与最优控制研究[D]. 长沙:湖南大学, 2012. SHEN Jian. Study on performance simulation and optimal control of momentum flywheel isolation platform[D]. Changsha:Hunan University, 2012.
[28] ZHANG Y, XU S J. Vibration isolation platform for control moment gyroscopes on satellites[J]. Journal of Aerospace Engineering, 2012, 25(4):641-652.
[29] ALAM M N, AKHLAQ A, RAHMAN N U. Dynamic analysis and vibration control of a multi-body system using MSC Adams[J]. Latin American Journal of Solids and Structures, 2015, 12(8):1505-1524.
[30] YANG L H, SU K, LIU S Y, et al. Study on active vibration isolation system using neural network sliding mode control[J]. Journal of Vibroengineering, 2017, 19(8):6904-6104.
[31] TANG C Y, ZHAO G Y, ZHOU W, et al. Research on suspension system based on fuzzy logic control[C]//Advanced Computer Control (ICACC), 2nd International Conference. Shenyang:IEEE, 2010:5-8.
[32] NAN Y H, XUAN D J, KIM J W, et al. Control of an active suspension based on fuzzy logic[C]//International Conference on Computer and Electrical Engineering. Phuket:IEEE, 2008:303-307.
[33] YANG C F, HE J F, JIANG H Z, et al. Modeling and simulation of 6-DOF parallel manipulator based on PID control with gravity compensation in Simulink/ADAMS[C]//International Workshop on Modelling, Simulation and Optimization. Hong Kong:IEEE, 2008:391-395.
[34] ZHU D L, QIN J Y, ZHANG Y, et al. Research on co-simulation using ADAMS and MATLAB for active vibration isolation system[C]//International Conference on Intelligent Computation Technology and Automation. Changsha:IEEE, 2010:1126-1129.
[35] 陈志伟,董月亮. MSC Adams多体动力学仿真基础与实例解析[M]. 北京:中国水利水电出版社, 2012.
[36] 刘白雁.机电系统动态仿真:基于MATLAB/Simulink[M]. 北京:机械工业出版社, 2012.

[1] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.