Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 187-195    DOI: 10.3785/j.issn.1008-973X.2025.01.018
土木工程、交通工程     
基于幂函数风亏分布的三维偏航尾流模型
周品涵1(),沈炼2,*(),韩艳1,许家陆1,米立华1,蔡春声3
1. 长沙理工大学 土木工程学院,湖南 长沙 410114
2. 长沙学院 土木工程学院,湖南 长沙 410022
3. 东南大学 交通学院,江苏 南京 211189
Three-dimensional yaw wake model based on wind velocity deficit distribution of power function
Pinhan ZHOU1(),Lian SHEN2,*(),Yan HAN1,Jialu XU1,Lihua MI1,Chunsheng CAI3
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
2. School of Civil Engineering, Changsha University, Changsha 410022, China
3. School of Transportation, Southeast University, Nanjing 211189, China
 全文: PDF(1439 KB)   HTML
摘要:

为了提升风机尾流模拟精度,基于风亏幂函数分布假定和Jensen尾流模型建立质量通量守恒方程. 将连续性方程与各向异性经验公式作为补充约束,结合Jiménez偏航尾流中心偏移假定提出新型风机三维尾流模型,实现近尾流区域到远尾流区域的风亏形状过渡. 利用风洞试验数据验证所提模型的准确性,在不考虑偏航运行的情况下,近尾流区域拟合的最大误差不超过8%,在远尾流区域,模拟误差不超过5%. 在考虑偏航的工况中,所提模型能够准确描述尾迹中心水平方向的挠曲;在展向剖面内,所提模型与风洞试验实测数据对比的平均绝对误差不超过5%. 验证结果表明,所提模型可以精确描述有无偏航情况下的风机下游风速分布.

关键词: 风力机解析模型三维尾流模型幂律函数偏航尾流    
Abstract:

To enhance the accuracy of wind turbine wake simulation, a mass flux conservation equation was established based on wind velocity deficit distribution of power function and the Jensen wake model. Supplementary constraints were provided by the continuity equation and anisotropic empirical formulas, and to achieve a transition in wind velocity deficit shape from the near-wake to the far-wake region, a new three-dimensional wake model for wind turbines was proposed incorporating the assumption of Jiménez yaw wake center offset. Model accuracy validation was conducted using wind tunnel test data. Without considering yaw operation, the maximum fitting error in the near-wake region remained within 8%, while in the far-wake region, the simulation error was controlled within 5%. Under yaw conditions, the deflection of the wake center in the horizontal direction was described by the proposed model accurately. In the spanwise profile, the average absolute error between the proposed model and wind tunnel experimental data was within 5%. The validation results show that the proposed model accurately describes the downstream wind velocity distribution of wind turbines, both with and without yaw conditions.

Key words: wind turbine    analytical model    three-dimensional wake model    power-law function    yaw wake
收稿日期: 2024-01-12 出版日期: 2025-01-18
CLC:  TM 315  
基金资助: 国家自然科学基金资助项目(52108433);湖南省人才工程项目(2021RC4031,2023RC3192,2023TJ-N17);长沙市杰出青年创新培育计划项目(kq1905004);长沙理工大学“实践创新与创业能力提升计划”项目(CLSJCX23040).
通讯作者: 沈炼     E-mail: zhouph@stu.csust.edu.cn;shenl@ccsu.edu.cn
作者简介: 周品涵(2000—),男,硕士生,从事风机尾流研究. orcid.org/0009-0002-1418-8377. E-mail:zhouph@stu.csust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周品涵
沈炼
韩艳
许家陆
米立华
蔡春声

引用本文:

周品涵,沈炼,韩艳,许家陆,米立华,蔡春声. 基于幂函数风亏分布的三维偏航尾流模型[J]. 浙江大学学报(工学版), 2025, 59(1): 187-195.

Pinhan ZHOU,Lian SHEN,Yan HAN,Jialu XU,Lihua MI,Chunsheng CAI. Three-dimensional yaw wake model based on wind velocity deficit distribution of power function. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 187-195.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.018        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/187

图 1  不同指数下幂函数示意图
图 2  风力机尾流控制体坐标系统
图 3  风机偏航示意图
图 4  不同尾流模型的水平风速对比
图 5  所提模型的水平风速相对误差分布
图 6  所提模型在不同剖面的风速云图
图 7  不同尾流模型的垂直风速对比
x/D$\overline {{\mathrm{RE}}} $/%
3DEG3DEP所提模型
25.263.212.71
35.542.642.46
52.602.182.15
102.072.202.19
142.032.282.21
201.681.851.81
表 1  不同尾流模型的垂直风速平均相对误差
图 8  所提模型的垂直风速相对误差分布
图 9  所提模型与实测数据的尾迹中心对比
图 10  不同尾流模型的偏航尾流
图 11  所提模型的偏航尾流相对误差分布
23 SONG D, TU Y, WANG L, et al Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator[J]. Applied Energy, 2022, 312: 118821
doi: 10.1016/j.apenergy.2022.118821
24 SONG D, LI Z, WANG L, et al Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation[J]. Applied Energy, 2022, 312: 118773
doi: 10.1016/j.apenergy.2022.118773
25 DAI J, YANG X, HU W, et al Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149: 684- 696
doi: 10.1016/j.energy.2018.02.059
26 DAHLBERG J A, MEDICI D. Potential improvement of wind turbine array efficiency by active wake control (AWC) [C]// European Wind Energy Conference and Exhibition . Madrid: [s.n.], 2003: 65−84.
27 GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al Wind plant power optimization through yaw control using a parametric model for wake effects: a CFD simulation study[J]. Wind Energy, 2016, 19: 95- 114
doi: 10.1002/we.1822
28 BARTHELMIE R J, LARSEN G C, FRANDSEN S T, et al Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23 (7): 888- 901
doi: 10.1175/JTECH1886.1
29 BARTHELMIE R J, FRANDSEN S T, NIELSEN M N, et al Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm[J]. Wind Energy, 2007, 10: 517- 528
doi: 10.1002/we.238
30 BLONDEL F, CATHELAIN M An alternative form of the super-Gaussian wind turbine wake model[J]. Wind Energy Science, 2020, 5 (3): 1225- 1236
doi: 10.5194/wes-5-1225-2020
31 ZHU X, CHEN Y, XU S, et al Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification[J]. Energy, 2023, 270: 126907
doi: 10.1016/j.energy.2023.126907
32 JIMÉNEZ A, CRESPO A, MIGOYA E Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind Energy, 2009, 13: 559- 572
33 LING Z, ZHAO Z, LIU Y, et al A three-dimensional wave model for wind turbines based on a polynomial distribution of wake velocity[J]. Ocean Engineering, 2023, 282: 115064
doi: 10.1016/j.oceaneng.2023.115064
34 WU Y T, PORTÉ-AGEL F Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations[J]. Boundary-Layer Meteorology, 2011, 138: 345- 366
doi: 10.1007/s10546-010-9569-x
1 国家能源局. 2023年全国电力工业统计数据[EB/OL]. (2024−01−26) [2024−03−01] . https://www.nea.gov.cn/2024-01/26/c_1310762246.htm.
2 JENSEN N O. A note on wind generator interaction [R]. Roskilde: Risø National Laboratory, 1983.
35 BASTANKHAH M, PORTÉ-AGEL F Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of Fluid Mechanics, 2016, 806: 506- 541
doi: 10.1017/jfm.2016.595
36 QIAN G W, ISHIHARA T A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11 (3): 665
doi: 10.3390/en11030665
3 KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency [C]// European Wind Energy Association Conference and Exhibition . Rome: [s.n.], 1986: 407−410.
4 FRANDSEN S, BARTHELMIE R, PRYOR S, et al Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9 (1/2): 39- 53
5 BASTANKHAH M, PORTÉ-AGEL F A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116- 123
doi: 10.1016/j.renene.2014.01.002
6 TIAN L, ZHU W, SHEN W, et al Development and validation of a new two-dimensional wake model for wind turbine wakes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 90- 99
doi: 10.1016/j.jweia.2014.12.001
7 GAO X, YANG H, LU L Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied Energy, 2016, 174: 192- 200
doi: 10.1016/j.apenergy.2016.04.098
8 SUN H, YANG H Study on an innovative three-dimensional wind turbine wake model[J]. Applied Energy, 2018, 226: 483- 493
doi: 10.1016/j.apenergy.2018.06.027
9 XIE S, ARCHER C Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation[J]. Wind Energy, 2015, 18: 1815- 1838
doi: 10.1002/we.1792
10 ABKAR M, PORTÉ-AGEL F Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study[J]. Physics of Fluids, 2015, 27: 035104
doi: 10.1063/1.4913695
37 HE R, DENG X, LI Y, et al Three-dimensional yaw wake model development with validation from wind tunnel experiments[J]. Energy, 2023, 282: 128402
doi: 10.1016/j.energy.2023.128402
11 HE R, YANG H, SUN H, et al A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes[J]. Applied Energy, 2021, 296: 117059
doi: 10.1016/j.apenergy.2021.117059
12 WANG T, CAI C, WANG X, et al A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow[J]. Energy, 2023, 271: 127089
doi: 10.1016/j.energy.2023.127089
13 DHIMAN H S, DEB D, FOLEY A M Bilateral Gaussian wake model formulation for wind farms: a forecasting based approach[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109873
doi: 10.1016/j.rser.2020.109873
14 PARADA L, HERRERA C, FLORES P, et al Wind farm layout optimization using a Gaussian-based wake model[J]. Renewable Energy, 2017, 107: 531- 541
doi: 10.1016/j.renene.2017.02.017
15 GUO N, ZHANG M, LI B, et al Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104548
doi: 10.1016/j.jweia.2021.104548
16 田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014: 1–153.
TIAN Linlin. Numerical simulation of wind turbine wakes and the study of wind farm layout optimization [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 1–153.
17 杨祥生, 赵宁, 田琳琳 两种新修正工程模型对多台风力机尾流数值模拟分析[J]. 太阳能学报, 2018, 39 (4): 1127- 1134
YANG Xiangsheng, ZHAO Ning, TIAN Linlin Numerical simulation analysis of multiple wind turbine wake based on two new modified engineering models[J]. Acta Energiae Solaris Sinica, 2018, 39 (4): 1127- 1134
18 SCHREIBER J, BALBAA A, BOTTASSO C L Brief communication: a double-Gaussian wake model[J]. Wind Energy Science, 2020, 5 (1): 237- 244
doi: 10.5194/wes-5-237-2020
19 KEANE A Advancement of an analytical double-Gaussian full wind turbine wake model[J]. Renewable Energy, 2021, 171: 687- 708
doi: 10.1016/j.renene.2021.02.078
20 AINSLIE J F. Development of an eddy viscosity model for wind turbine wakes [C]// 7th BWEA Wind Energy Conference . Oxford: [s.n.], 1985: 61−66.
21 MAKRIDIS A. Modelling of wind turbine wakes in complex terrain using computational fluid dynamics [D]. Edinburgh: The University of Edinburgh, 2012: 1−328.
22 夏露. 基于二维尾流模型的风电场布局优化研究[D]. 保定: 华北电力大学, 2018: 1−45.
XIA Lu. Research on wind farm layout optimization based on 2D wake models [D]. Baoding: North China Electric Power University, 2018: 1−45.
[1] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[2] 吴浩宇,赵永生,何炎平,毛文刚,阳杰,谷孝利,黄超. 张力腿浮式风机筋腱失效模式下瞬态响应分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2196-2203.
[3] 徐文浩,邱展,喻伯平,王福新. 双层反转垂直轴风力机的流场特性数值模拟[J]. 浙江大学学报(工学版), 2019, 53(11): 2223-2230.
[4] 柯世堂,余文林,徐璐,杜凌云,余玮,杨青. 风雨下考虑偏航效应风力机流场及气动载荷[J]. 浙江大学学报(工学版), 2019, 53(10): 1936-1945.
[5] 钟云龙, 吴立建, 黄晓艳, 方攸同. 异极型径向磁轴承的非线性解析模型[J]. 浙江大学学报(工学版), 2019, 53(1): 193-199.
[6] 任松, 欧阳汛, 吴建勋, 陈钒, 王亮, 陈结. 含时间效应的硬石膏隧道弹-膨胀解析模型[J]. 浙江大学学报(工学版), 2018, 52(5): 896-905.
[7] 袁仁育, 罗坤, 汪建文, 冀文举, 张立茹, 王强, 樊建人. 动态入流条件下风力机运行控制的数值模拟[J]. 浙江大学学报(工学版), 2018, 52(11): 2128-2135.
[8] 周涛, 何炎平, 孟龙, 赵永生. 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1864-1873.
[9] 柯世堂,余玮,王同光. 停机状态叶片位置对风力机体系气动性能影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1230-1238.
[10] 左曙光, 吴双龙, 吴旭东, 林福, 邓文哲. 电励磁爪极发电机气隙磁场解析模型[J]. 浙江大学学报(工学版), 2016, 50(12): 2400-2408.
[11] 殷秀兴, 顾亚京, 林勇刚, 叶杭冶, 李伟. 复现风力机五自由度载荷的加载控制方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1470-1477.
[12] 柯世堂, 王同光, 陈少林, 葛耀君. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报(工学版), 2014, 48(4): 686-692.
[13] 王子阳, 邵卫云, 张仪萍. 考虑土壤分层的地源热泵圆柱面热源模型[J]. J4, 2013, 47(8): 1338-1345.
[14] 袁行飞,余俊伟. 屋顶安装型风力机塔架风振反应分析[J]. J4, 2013, 47(11): 1911-1916.
[15] 孟豹, 黄平捷, 叶波, 等. 脉冲涡流解析模型研究范[J]. J4, 2009, 43(09): 1621-1624.