土木工程、交通工程 |
|
|
|
|
基于幂函数风亏分布的三维偏航尾流模型 |
周品涵1( ),沈炼2,*( ),韩艳1,许家陆1,米立华1,蔡春声3 |
1. 长沙理工大学 土木工程学院,湖南 长沙 410114 2. 长沙学院 土木工程学院,湖南 长沙 410022 3. 东南大学 交通学院,江苏 南京 211189 |
|
Three-dimensional yaw wake model based on wind velocity deficit distribution of power function |
Pinhan ZHOU1( ),Lian SHEN2,*( ),Yan HAN1,Jialu XU1,Lihua MI1,Chunsheng CAI3 |
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China 2. School of Civil Engineering, Changsha University, Changsha 410022, China 3. School of Transportation, Southeast University, Nanjing 211189, China |
引用本文:
周品涵,沈炼,韩艳,许家陆,米立华,蔡春声. 基于幂函数风亏分布的三维偏航尾流模型[J]. 浙江大学学报(工学版), 2025, 59(1): 187-195.
Pinhan ZHOU,Lian SHEN,Yan HAN,Jialu XU,Lihua MI,Chunsheng CAI. Three-dimensional yaw wake model based on wind velocity deficit distribution of power function. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 187-195.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.018
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I1/187
|
23 |
SONG D, TU Y, WANG L, et al Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator[J]. Applied Energy, 2022, 312: 118821
doi: 10.1016/j.apenergy.2022.118821
|
24 |
SONG D, LI Z, WANG L, et al Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation[J]. Applied Energy, 2022, 312: 118773
doi: 10.1016/j.apenergy.2022.118773
|
25 |
DAI J, YANG X, HU W, et al Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149: 684- 696
doi: 10.1016/j.energy.2018.02.059
|
26 |
DAHLBERG J A, MEDICI D. Potential improvement of wind turbine array efficiency by active wake control (AWC) [C]// European Wind Energy Conference and Exhibition . Madrid: [s.n.], 2003: 65−84.
|
27 |
GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al Wind plant power optimization through yaw control using a parametric model for wake effects: a CFD simulation study[J]. Wind Energy, 2016, 19: 95- 114
doi: 10.1002/we.1822
|
28 |
BARTHELMIE R J, LARSEN G C, FRANDSEN S T, et al Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23 (7): 888- 901
doi: 10.1175/JTECH1886.1
|
29 |
BARTHELMIE R J, FRANDSEN S T, NIELSEN M N, et al Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm[J]. Wind Energy, 2007, 10: 517- 528
doi: 10.1002/we.238
|
30 |
BLONDEL F, CATHELAIN M An alternative form of the super-Gaussian wind turbine wake model[J]. Wind Energy Science, 2020, 5 (3): 1225- 1236
doi: 10.5194/wes-5-1225-2020
|
31 |
ZHU X, CHEN Y, XU S, et al Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification[J]. Energy, 2023, 270: 126907
doi: 10.1016/j.energy.2023.126907
|
32 |
JIMÉNEZ A, CRESPO A, MIGOYA E Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind Energy, 2009, 13: 559- 572
|
33 |
LING Z, ZHAO Z, LIU Y, et al A three-dimensional wave model for wind turbines based on a polynomial distribution of wake velocity[J]. Ocean Engineering, 2023, 282: 115064
doi: 10.1016/j.oceaneng.2023.115064
|
34 |
WU Y T, PORTÉ-AGEL F Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations[J]. Boundary-Layer Meteorology, 2011, 138: 345- 366
doi: 10.1007/s10546-010-9569-x
|
1 |
国家能源局. 2023年全国电力工业统计数据[EB/OL]. (2024−01−26) [2024−03−01] . https://www.nea.gov.cn/2024-01/26/c_1310762246.htm.
|
2 |
JENSEN N O. A note on wind generator interaction [R]. Roskilde: Risø National Laboratory, 1983.
|
35 |
BASTANKHAH M, PORTÉ-AGEL F Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of Fluid Mechanics, 2016, 806: 506- 541
doi: 10.1017/jfm.2016.595
|
36 |
QIAN G W, ISHIHARA T A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11 (3): 665
doi: 10.3390/en11030665
|
3 |
KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency [C]// European Wind Energy Association Conference and Exhibition . Rome: [s.n.], 1986: 407−410.
|
4 |
FRANDSEN S, BARTHELMIE R, PRYOR S, et al Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9 (1/2): 39- 53
|
5 |
BASTANKHAH M, PORTÉ-AGEL F A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116- 123
doi: 10.1016/j.renene.2014.01.002
|
6 |
TIAN L, ZHU W, SHEN W, et al Development and validation of a new two-dimensional wake model for wind turbine wakes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 90- 99
doi: 10.1016/j.jweia.2014.12.001
|
7 |
GAO X, YANG H, LU L Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied Energy, 2016, 174: 192- 200
doi: 10.1016/j.apenergy.2016.04.098
|
8 |
SUN H, YANG H Study on an innovative three-dimensional wind turbine wake model[J]. Applied Energy, 2018, 226: 483- 493
doi: 10.1016/j.apenergy.2018.06.027
|
9 |
XIE S, ARCHER C Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation[J]. Wind Energy, 2015, 18: 1815- 1838
doi: 10.1002/we.1792
|
10 |
ABKAR M, PORTÉ-AGEL F Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study[J]. Physics of Fluids, 2015, 27: 035104
doi: 10.1063/1.4913695
|
37 |
HE R, DENG X, LI Y, et al Three-dimensional yaw wake model development with validation from wind tunnel experiments[J]. Energy, 2023, 282: 128402
doi: 10.1016/j.energy.2023.128402
|
11 |
HE R, YANG H, SUN H, et al A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes[J]. Applied Energy, 2021, 296: 117059
doi: 10.1016/j.apenergy.2021.117059
|
12 |
WANG T, CAI C, WANG X, et al A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow[J]. Energy, 2023, 271: 127089
doi: 10.1016/j.energy.2023.127089
|
13 |
DHIMAN H S, DEB D, FOLEY A M Bilateral Gaussian wake model formulation for wind farms: a forecasting based approach[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109873
doi: 10.1016/j.rser.2020.109873
|
14 |
PARADA L, HERRERA C, FLORES P, et al Wind farm layout optimization using a Gaussian-based wake model[J]. Renewable Energy, 2017, 107: 531- 541
doi: 10.1016/j.renene.2017.02.017
|
15 |
GUO N, ZHANG M, LI B, et al Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104548
doi: 10.1016/j.jweia.2021.104548
|
16 |
田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014: 1–153. TIAN Linlin. Numerical simulation of wind turbine wakes and the study of wind farm layout optimization [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 1–153.
|
17 |
杨祥生, 赵宁, 田琳琳 两种新修正工程模型对多台风力机尾流数值模拟分析[J]. 太阳能学报, 2018, 39 (4): 1127- 1134 YANG Xiangsheng, ZHAO Ning, TIAN Linlin Numerical simulation analysis of multiple wind turbine wake based on two new modified engineering models[J]. Acta Energiae Solaris Sinica, 2018, 39 (4): 1127- 1134
|
18 |
SCHREIBER J, BALBAA A, BOTTASSO C L Brief communication: a double-Gaussian wake model[J]. Wind Energy Science, 2020, 5 (1): 237- 244
doi: 10.5194/wes-5-237-2020
|
19 |
KEANE A Advancement of an analytical double-Gaussian full wind turbine wake model[J]. Renewable Energy, 2021, 171: 687- 708
doi: 10.1016/j.renene.2021.02.078
|
20 |
AINSLIE J F. Development of an eddy viscosity model for wind turbine wakes [C]// 7th BWEA Wind Energy Conference . Oxford: [s.n.], 1985: 61−66.
|
21 |
MAKRIDIS A. Modelling of wind turbine wakes in complex terrain using computational fluid dynamics [D]. Edinburgh: The University of Edinburgh, 2012: 1−328.
|
22 |
夏露. 基于二维尾流模型的风电场布局优化研究[D]. 保定: 华北电力大学, 2018: 1−45. XIA Lu. Research on wind farm layout optimization based on 2D wake models [D]. Baoding: North China Electric Power University, 2018: 1−45.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|