Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1864-1873    DOI: 10.3785/j.issn.1008-973X.2018.10.004
新型6 MW单柱浮式风力机耦合运动分析
周涛1,2,3, 何炎平1,2,3, 孟龙1,2,3, 赵永生1,2,3
1. 上海交通大学 海洋工程国家重点实验室, 上海 200240;
2. 高新船舶与深海开发装备协同创新中心(船海协创中心), 上海 200240;
3. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240
Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations
ZHOU Tao1,2,3, HE Yan-ping1,2,3, MENG Long1,2,3, ZHAO Yong-sheng1,2,3
1. State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration(CISSE), Shanghai 200240, China;
3. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
 全文: PDF(2214 KB)   HTML

针对100 m水深条件,设计新型6 MW海上单柱浮式风力机;利用气-液-固-弹性数值模拟软件FAST,对该浮式风力机进行全耦合时域动力响应分析.整个风力机系统的气动力分析采用叶素动量理论,浮式基础的水动力分析基于势流理论同时考虑采用Morison公式计算得到的黏性阻尼,系泊系统采用等效的弹性杆单元.数值仿真结果表明:浮式基础纵荡和纵摇耦合作用较明显;平台运动响应主要取决于风载荷,波浪载荷会改变平台在平衡位置附近的振荡运动;风浪同向会激发较大的运动响应;风浪的夹角越大,平台首摇运动越明显;在额定海况下,环境载荷方向的变化对垂荡运动的影响较小;delta-line能够很好地控制首摇运动,可以避免锚链缠绕现象发生;设计出的6 MW浮式风力机具有良好的总体运动响应,系泊系统设计方案能够保证风力机系统的安全运行.


A new 6 MW Spar-type floating offshore wind turbine (FOWT) under 100 meters water depth was developed. Complete dynamic response coupling analysis in time domain was conducted by using aero-hydro-servo-elastic simulation code-FAST software. The aerodynamic force analysis of the whole FOWT system was based on the blade element momentum theory. The potential flow theory was applied to the hydrodynamic analysis of floating foundation, in which the viscous damping computed by MORISON formula was implemented. The mooring system adopted equivalent elastic rod model. The numerical simulation results show that the coupling effect between surge and pitch is evident. The platform motion response mainly depends on the wind load, while the wave load changes the oscillating motion of the platform near the equilibrium position. A greater motion response will be stimulated by the same wind and wave direction. The yaw motion of the platform becomes more obvious when the angle between the wind and the wave increases. Changes in environmental loads have little influence on the heave motion under rated sea conditions. Delta-line is a good way to control the yaw motion so as to avoid the phenomenon of mooring line winding. The 6 MW Spar-type FOWT possesses favorable global dynamic performance, and safe operation of the FOWT can be ensured by the mooring system.

收稿日期: 2017-07-07 出版日期: 2018-10-11
CLC:  P753  


通讯作者: 何炎平,男,研究员,博导     E-mail:
作者简介: 周涛(1993-),男,硕士生,从事浮式风力机基础设计及动态响应研究
E-mail Alert


周涛, 何炎平, 孟龙, 赵永生. 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1864-1873.

ZHOU Tao, HE Yan-ping, MENG Long, ZHAO Yong-sheng. Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1864-1873.


[1] Global Wind Energy Council (GWEC) (2016). Global wind energy outlook 2016[R].[S. l.]:GWEC, 2016.
[2] 郑崇伟. 全球海域风能资源储量分析[J]. 中外能源, 2011, 16(7):37-41 ZHENG Chong-wei. Analysis of wind energy reserves in global sea area[J]. Sino-Global Energy, 2011, 16(7):37-41
[3] 黄维平, 刘建军, 赵战华. 海上风电基础结构研究现状及发展趋势[J]. 海洋工程, 2009, 27(2):130-134 HUANG Wei-ping, LIU Jian-jun, ZHAO Zhan-hua. Research status and the development trend of offshore wind turbine structures[J]. The Ocean Engineering, 2009, 27(2):130-134
[4] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado:National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009.
[5] JONKMAN J, MUSIAL W. Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment[R]. Colorado:National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010.
[6] ZHANG R, TANG Y, HU J, et al. Dynamic response in frequency and time domains of a floating foundation for offshore wind turbines[J]. Ocean Engineering, 2013, 60(1):115-123.
[7] CHENG Z, WANG K, GAO Z, et al. Dynamic response analysis of three floating wind turbine concepts with a two-bladed darrieus rotor[J]. Journal of Ocean and Wind Energy, 2015, 2(4):213-222.
[8] TRAN T T, KIM D H. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147:104-119.
[9] ZHAO Y, YANG J, HE Y, et al. Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine[J]. China Ocean Engineering, 2016, 30(4):505-520.
[10] GOUPEE A J, KOO B J, KIMBALL R W, et al. Experimental comparison of three floating wind turbine concepts[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2):020906.
[11] DNV G L. Design of offshore wind turbine structures[S]. Oslo:[s.n.], 2016.
[12] ZAMBRANO T, MACCREADY T, KICENIUK T, et al. Dynamic modeling of deepwater oore wind turbine structures in Gulf of Mexico storm conditions[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. St John's, Canada:ASME, 2006:629-634.
[13] API. API 2F specification for mooring chain[S]. Washington, DC:[s.n.], 1997.
[14] BOSSANYI E A. Bladed for windows user manual[M]. Bristol:Garrad Hassan and Partners, 2000.
[15] 中国船级社. 海上移动平台入级与建造规范[S]. 北京:人民交通出版社, 2005.
[16] CUMMINS W E. The impulse response function and ship motions[R]. Washington DC:David Taylor Model Basin, 1962:6-23.
[17] KARIMIRAD M, MOAN T. Wave-and wind-induced dynamic response of a Spar-type offshore wind turbine[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 138(1):9-20.

[1] 刘炜, 王聪华, 赵尔平, 雒伟群. 基于背景类别分层分离的不透水面间接提取——以兰州城关区EO-1 ALI图像为例[J]. 浙江大学学报(工学版), 2019, 53(1): 137-145.