机械与能源工程 |
|
|
|
|
新型6 MW单柱浮式风力机耦合运动分析 |
周涛1,2,3, 何炎平1,2,3, 孟龙1,2,3, 赵永生1,2,3 |
1. 上海交通大学 海洋工程国家重点实验室, 上海 200240;
2. 高新船舶与深海开发装备协同创新中心(船海协创中心), 上海 200240;
3. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240 |
|
Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations |
ZHOU Tao1,2,3, HE Yan-ping1,2,3, MENG Long1,2,3, ZHAO Yong-sheng1,2,3 |
1. State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration(CISSE), Shanghai 200240, China;
3. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China |
引用本文:
周涛, 何炎平, 孟龙, 赵永生. 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1864-1873.
ZHOU Tao, HE Yan-ping, MENG Long, ZHAO Yong-sheng. Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1864-1873.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.004
或
http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1864
|
[1] Global Wind Energy Council (GWEC) (2016). Global wind energy outlook 2016[R].[S. l.]:GWEC, 2016.
[2] 郑崇伟. 全球海域风能资源储量分析[J]. 中外能源, 2011, 16(7):37-41 ZHENG Chong-wei. Analysis of wind energy reserves in global sea area[J]. Sino-Global Energy, 2011, 16(7):37-41
[3] 黄维平, 刘建军, 赵战华. 海上风电基础结构研究现状及发展趋势[J]. 海洋工程, 2009, 27(2):130-134 HUANG Wei-ping, LIU Jian-jun, ZHAO Zhan-hua. Research status and the development trend of offshore wind turbine structures[J]. The Ocean Engineering, 2009, 27(2):130-134
[4] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado:National Renewable Energy Lab.(NREL), Golden, CO (United States), 2009.
[5] JONKMAN J, MUSIAL W. Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment[R]. Colorado:National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010.
[6] ZHANG R, TANG Y, HU J, et al. Dynamic response in frequency and time domains of a floating foundation for offshore wind turbines[J]. Ocean Engineering, 2013, 60(1):115-123.
[7] CHENG Z, WANG K, GAO Z, et al. Dynamic response analysis of three floating wind turbine concepts with a two-bladed darrieus rotor[J]. Journal of Ocean and Wind Energy, 2015, 2(4):213-222.
[8] TRAN T T, KIM D H. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147:104-119.
[9] ZHAO Y, YANG J, HE Y, et al. Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine[J]. China Ocean Engineering, 2016, 30(4):505-520.
[10] GOUPEE A J, KOO B J, KIMBALL R W, et al. Experimental comparison of three floating wind turbine concepts[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2):020906.
[11] DNV G L. Design of offshore wind turbine structures[S]. Oslo:[s.n.], 2016.
[12] ZAMBRANO T, MACCREADY T, KICENIUK T, et al. Dynamic modeling of deepwater oore wind turbine structures in Gulf of Mexico storm conditions[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. St John's, Canada:ASME, 2006:629-634.
[13] API. API 2F specification for mooring chain[S]. Washington, DC:[s.n.], 1997.
[14] BOSSANYI E A. Bladed for windows user manual[M]. Bristol:Garrad Hassan and Partners, 2000.
[15] 中国船级社. 海上移动平台入级与建造规范[S]. 北京:人民交通出版社, 2005.
[16] CUMMINS W E. The impulse response function and ship motions[R]. Washington DC:David Taylor Model Basin, 1962:6-23.
[17] KARIMIRAD M, MOAN T. Wave-and wind-induced dynamic response of a Spar-type offshore wind turbine[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2011, 138(1):9-20. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|