Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 177-186    DOI: 10.3785/j.issn.1008-973X.2025.01.017
土木工程、交通工程     
地聚合物固化风积沙应力-应变-强度特性及微观结构
陈锐1(),陈海1,郝若愚1,包卫星1,李林1,罗文敏2
1. 长安大学 公路学院,陕西 西安 710064
2. 南宁轨道交通建设有限公司,广西 南宁 530025
Stress-strain-strength characteristics and microstructure of geopolymer stabilized aeolian sand
Rui CHEN1(),Hai CHEN1,Ruoyu HAO1,Weixing BAO1,Lin LI1,Wenmin LUO2
1. School of Highway, Chang’an University, Xi’an 710064, China
2. Nanning Rail Transit Construction Limited Company, Nanning 530025, China
 全文: PDF(3150 KB)   HTML
摘要:

为了满足沙漠工程建设的需求,开展固结不排水(CU)三轴压缩试验与扫描电镜(SEM)分析,基于临界状态理论,探讨细粒的质量分数和地聚合物掺量对风积沙抗剪强度特性及微观结构的影响. 结果表明:随着细粒的质量分数增加,风积沙的应力-应变曲线由软化型向硬化型转变,峰值偏应力降低;固化风积沙的峰值与残余偏应力均随着地聚合物掺量的增加而增大,固化风积沙表现出显著的脆性破坏特征与剪胀趋势;细粒土的掺入能增大风积沙的黏聚力并减小风积沙内摩擦角,地聚合物的胶结作用显著增大了固化风积沙的黏聚力,对风积沙内摩擦角影响较小. 固化风积沙与未固化风积沙的临界状态线大致平行,细粒的质量分数为20%的固化风积沙临界状态线均位于未固化风积沙临界状态线的下方,且随着地聚合物掺量的增加而逐渐下移;细粒的质量分数为30%的固化风积沙临界状态线均位于未固化风积沙临界状态线的上方,且随地聚合物掺量的增加而逐渐上移. SEM分析结果显示,掺入的细粒土填充了风积沙颗粒间的大孔隙,使土体结构致密,改变了风积沙颗粒间的接触形式,为地聚合物提供了可胶结面积;细粒土与地聚合物共同作用显著提升了固化风积沙的抗剪强度.

关键词: 临界状态三轴试验风积沙地聚合物固化机制    
Abstract:

To meet the construction requirements in the desert zone, the consolidated undrained (CU) triaxial compression tests and scanning electron microscope (SEM) analysis were carried out, and the effects of mass fraction of fines and geopolymer (GP) content on the shear strength properties and microstructure of aeolian sand were explored based on the critical state theory. Results show that with an increase in the mass fraction of fines, the stress-strain curve of aeolian sand shifts from softening type to hardening type, and the peak deviatoric stress decreases. The peak and residual deviatoric stress of stabilized aeolian sand both increase with increasing GP content, and the stabilized aeolian sand shows obvious brittle failure and dilatancy. The inclusion of fines into aeolian sand benefits the increase of cohesion and reduces the internal friction angle. The cementing effect of GP significantly enhances the cohesion of stabilized aeolian sand and has little effect on the internal friction angle. The critical state lines of stabilized aeolian sand and untreated aeolian sand are almost parallel. For stabilized aeolian sand with a 20% mass fraction of fines, its critical state line is located beneath the one without stabilization and gradually moves downward with increasing GP content. For stabilized aeolian sand with a 30% mass fraction of fines, its critical state line is located above the one without stabilization and gradually moves upward with increasing GP content. SEM analysis results indicate that the inclusion of fines fills the pores and changes the contact pattern between aeolian sand particles, which effectively increases the compactness and provides cementing areas for GP. The combined effect of fines and GP significantly increases the shear strength of stabilized aeolian sand.

Key words: critical state    triaxial test    aeolian sand    geopolymer    stabilizing mechanism
收稿日期: 2023-11-06 出版日期: 2025-01-18
CLC:  TU 416.1  
基金资助: 国家自然科学基金资助项目(51708041);陕西省自然科学基金资助项目(2022JM-228);长安大学中央高校基本科研业务费专项资金资助项目(300102210213).
作者简介: 陈锐(1987—),男,副教授,从事特殊土力学特性和地基处理研究. orcid.org/0000-0002-9890-9735. E-mail:rchenua@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈锐
陈海
郝若愚
包卫星
李林
罗文敏

引用本文:

陈锐,陈海,郝若愚,包卫星,李林,罗文敏. 地聚合物固化风积沙应力-应变-强度特性及微观结构[J]. 浙江大学学报(工学版), 2025, 59(1): 177-186.

Rui CHEN,Hai CHEN,Ruoyu HAO,Weixing BAO,Lin LI,Wenmin LUO. Stress-strain-strength characteristics and microstructure of geopolymer stabilized aeolian sand. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 177-186.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.017        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/177

图 1  土样、前驱体颗粒级配曲线和风积沙与细粒土扫描电镜照片[19]
前驱体wB/%
SiO2Fe2O3Al2O3CaOMgOK2OSO3Na2O其他
粉煤灰52.349.6224.485.001.912.270.460.783.14
钢渣31.2035.409.008.402.402.303.102.745.46
水泥19.403.326.8460.62.680.955.260.200.75
表 1  地聚合物前驱体的化学成分
图 2  固化风积沙的击实曲线
wf/%wGP/%ρd,max/(g?cm?3)tc/dσ3/kPa
001.72050,100,150
2001.96050,100,150
3002.07050,100,150
2081.97750,100,150
20101.98750,100,150
20122.00750,100,150
3082.08750,100,150
30102.07750,100,150
30122.06750,100,150
表 2  固结不排水三轴压缩试验的方案
图 3  不同围压下含细粒风积沙的应力-应变曲线
图 4  含细粒风积沙的临界状态线
图 5  含细粒风积沙的残余偏应力与残余平均有效正应力关系
图 6  不同围压下含细粒地聚合物固化风积沙的应力-应变曲线
图 7  地聚合物固化风积沙的临界状态线
图 8  地聚合物固化风积沙的残余偏应力与残余平均有效正应力关系
图 9  含细粒地聚合物固化风积沙临界状态下的抗剪强度特性
图 10  地聚合物固化风积沙黏结强度随地聚合物掺量的变化
图 11  固化含细风积沙残余偏应力随地聚合物掺量及残余平均有效正应力的变化
图 12  地聚合固化风积沙的扫描电镜图
1 张龙菊, 黎亮, 孙艳玲, 等 含黏风积沙的抗剪强度特性试验研究[J]. 塔里木大学学报, 2019, 31 (3): 57- 62
ZHANG Longju, LI Liang, SUN Yanling, et al Experimental study on shear strength characteristics of viscous aeolian sand[J]. Journal of Tarim University, 2019, 31 (3): 57- 62
doi: 10.3969/j.issn.1009-0568.2019.03.010
2 巩桢翰. 风积沙及物理改良风积沙填筑重载铁路路基的工程特性研究[D]. 兰州: 兰州交通大学, 2020: 1–66.
GONG Zhenhan. Research on engineering characteristics of aeolian sand and physical improvement subgrade of heavy load railway [D]. Lanzhou: Lanzhou Jiaotong University, 2020: 1–66.
3 LOPEZ-QUEROL S, ARIAS-TRUJILLO J, GM-ELIPE M, et al Improvement of the bearing capacity of confined and unconfined cement-stabilized aeolian sand[J]. Construction and Building Materials, 2017, 153: 374- 384
doi: 10.1016/j.conbuildmat.2017.07.124
4 蔡燕燕, 江浩川, 俞缙, 等 水泥固化滨海风积砂力学特性试验及细观数值仿真[J]. 岩土工程学报, 2016, 38 (11): 1973- 1980
CAI Yanyan, JIANG Haochuan, YU Jin, et al Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (11): 1973- 1980
doi: 10.11779/CJGE201611006
5 盛明强, 乾增珍, 鲁先龙 水泥固化的风积沙地基扩展基础抗拔试验研究[J]. 岩土工程学报, 2017, 39 (12): 2261- 2267
SHENG Mingqiang, QIAN Zengzhen, LU Xianlong Uplift load tests on model spread foundations in cement-stabilized aeolian sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (12): 2261- 2267
doi: 10.11779/CJGE201712015
6 张向东, 李军, 孙琦, 等 水泥改良风积砂负温动力性能与流变特征研究[J]. 岩土力学, 2018, 39 (12): 4395- 4403
ZHANG Xiangdong, LI Jun, SUN Qi, et al Study of dynamic performance under negative temperature and rheology characteristic for cement improved aeolian sand[J]. Rock and Soil Mechanics, 2018, 39 (12): 4395- 4403
7 冉武平, 赵杰, 黄文薏, 等 无机处治风积沙强度特性及工程应用研究[J]. 大连理工大学学报, 2018, 58 (2): 141- 146
RAN Wuping, ZHAO Jie, HUANG Wenyi, et al Study of strength characteristics and engineering application of inorganic treated aeolian sand[J]. Journal of Dalian University of Technology, 2018, 58 (2): 141- 146
doi: 10.7511/dllgxb201802005
8 SMAIDA A, HADDADI S, NECHNECH A Improvement of the mechanical performance of dune sand for using in flexible pavements[J]. Construction and Building Materials, 2019, 208: 464- 471
doi: 10.1016/j.conbuildmat.2019.03.041
9 章定文, 王安辉 地聚合物胶凝材料性能及工程应用研究综述[J]. 建筑科学与工程学报, 2020, 37 (5): 13- 38
ZHANG Dingwen, WANG Anhui Review on property of geopolymer binder and its engineering application[J]. Journal of Architecture and Civil Engineering, 2020, 37 (5): 13- 38
10 PROVIS J L, BERNAL S A Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299- 327
doi: 10.1146/annurev-matsci-070813-113515
11 刘凤云, 罗怀瑞, 万旭升, 等 低温养护下电石渣激发偏高岭土基地聚物固化土力学特性及固化机制研究[J]. 岩土力学, 2023, 44 (11): 3151- 3164
LIU Fengyun, LUO Huairui, WAN Xusheng, et al Study on mechanical properties and curing mechanism of metakaolin based geopolymer solidified soil activated by calcium carbide slag under low temperature curing[J]. Rock and Soil Mechanics, 2023, 44 (11): 3151- 3164
12 王东星, 王宏伟, 邹维列, 等 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38 (Suppl.1): 3197- 3205
WANG Dongxing, WANG Hongwei, ZOU Weilie, et al Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Suppl.1): 3197- 3205
13 吴燕开, 史可健, 胡晓士, 等 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41 (6): 1014- 1022
WU Yankai, SHI Kejian, HU Xiaoshi, et al Experimental study on strength degradation of steel slag+cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (6): 1014- 1022
doi: 10.11779/CJGE201906004
14 周恒宇, 王修山, 胡星星, 等 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42 (8): 2089- 2098
ZHOU Hengyu, WANG Xiushan, HU Xingxing, et al Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge[J]. Rock and Soil Mechanics, 2021, 42 (8): 2089- 2098
15 张津津, 李博, 余闯, 等 矿渣-粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2021, 42 (9): 2421- 2430
ZHANG Jinjin, LI Bo, YU Chuang, et al Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil[J]. Rock and Soil Mechanics, 2021, 42 (9): 2421- 2430
16 BAI L, YANG Z, WU Y, et al Stabilization of aeolian sand for pavement subbase applications using alkali-activated fly ash and slag[J]. Minerals, 2023, 13 (3): 453
doi: 10.3390/min13030453
17 漠河. 特哈马不同含泥量风积沙路基填料特性试验研究[D]. 兰州: 兰州交通大学, 2015: 1–56.
MO He. The Study on the performance of Tehama’s aeolian sand with different silt content as subgrade filling [D]. Lanzhou: Lanzhou Jiaotong University, 2015: 1–56.
18 SIMPSON D C, EVANS T M Behavioral thresholds in mixtures of sand and kaolinite clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142 (2): 04015073
19 CHEN R, CHEN H, KANG Z, et al Experimental study on cyclic behavior of aeolian sand stabilized with geopolymer and fines[J]. Acta Geotechnica, 2024, 19: 669- 683
doi: 10.1007/s11440-023-02176-w
20 NATH P, SARKER P K Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature[J]. Cement and Concrete Composites, 2015, 55: 205- 214
doi: 10.1016/j.cemconcomp.2014.08.008
21 冀卫东, 李亚杰, 王旭东 反压饱和对砂土力学特性影响的试验研究[J]. 南京工业大学学报: 自然科学版, 2018, 40 (4): 86- 90
JI Weidong, LI Yajie, WANG Xudong Experimental study for influence of back pressure saturation on mechanical properties of sand[J]. Journal of Nanjing Tech University: Natural Science Edition, 2018, 40 (4): 86- 90
22 张涛, 刘松玉, 蔡国军 木质素改良粉土临界状态剪切特性试验[J]. 中国公路学报, 2016, 29 (10): 20- 28
ZHANG Tao, LIU Songyu, CAI Guojun Experiment on shear behaviour of silt treated with lignin at critical state[J]. China Journal of Highway and Transport, 2016, 29 (10): 20- 28
doi: 10.3969/j.issn.1001-7372.2016.10.003
23 LI X S, DAFALIAS Y F Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50 (4): 449- 460
24 MACIAS A L, LORIA A F R SANISAND-C*: simple anisotropic constitutive model for sand with cementation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2023, 47 (15): 2815- 2847
doi: 10.1002/nag.3602
25 蔡正银, 侯贺营, 张晋勋, 等 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41 (6): 989- 995
CAI Zhengyin, HOU Heying, ZHANG Jinxun Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (6): 989- 995
doi: 10.11779/CJGE201906001
26 李晓芳. 营双公路风积沙路用性能试验研究[D]. 西安: 长安大学, 2012: 1–58.
LI Xiaofang. Study on aeolian sand pavement performance of Yingshuang highway subgrade [D]. Xi’an: Chang’an University, 2012: 1–58.
27 YANG S L, SANDVEN R, GRANDE L Steady-state lines of sand–silt mixtures[J]. Canadian Geotechnical Journal, 2006, 43 (11): 1213- 1219
doi: 10.1139/t06-069
28 XIAO Y, STUEDLEIN A W, CHEN Q, et al Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144 (2): 1- 16
[1] 崔熙灿,张凌凯,王建祥. 缩尺效应对砂砾石料力学特性及其本构模型的影响[J]. 浙江大学学报(工学版), 2024, 58(6): 1198-1208.
[2] 苗泽锴,张大任,马刚,邹宇雄,陈远,周伟,肖宇轩. 基于X-ray CT原位三轴剪切试验的砂土颗粒材料微观动力学[J]. 浙江大学学报(工学版), 2023, 57(8): 1597-1606.
[3] 庄心善,周睦凯,周荣,陶高梁. EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报(工学版), 2022, 56(7): 1353-1362, 1403.
[4] 阮圣倩,王铁龙,陈士堃,刘毅,闫东明. 内掺PDMS对地聚合物性能和微观结构的影响[J]. 浙江大学学报(工学版), 2022, 56(7): 1302-1309.
[5] 陈绍祥,曹志刚,叶星池,蔡袁强,张琪. 考虑温度效应的路基粗粒填料亚塑性模型[J]. 浙江大学学报(工学版), 2022, 56(5): 938-946, 976.
[6] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[7] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[8] 李亚峰,聂如松,冷伍明,程龙虎,梅慧浩,董俊利. 间歇性循环荷载作用下细粒土的变形特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2109-2119.
[9] 凌道盛,李奖,王文军,胡成宝. 人工制备土的结构性及其对应变局部化的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1689-1696.
[10] 李奔奔, 江佳斐, 豆香香, 肖平成. 新型被动式真三轴试验装置[J]. 浙江大学学报(工学版), 2017, 51(9): 1688-1694.
[11] 刘飞禹 蔡袁强 徐长节 王军. 循环荷载下软土动弹性模量衰减规律研究[J]. J4, 2008, 42(9): 1479-1483.