Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 167-176    DOI: 10.3785/j.issn.1008-973X.2025.01.016
土木工程、交通工程     
水泥固化土火山灰反应产物的结构特性
徐菲1(),葛津宇1,2,韦华1,梁嘉辉1,李怀森1,韩雪松1
1. 南京水利科学研究院 材料结构研究所,江苏 南京 210029
2. 河海大学 水利水电学院,江苏 南京 210024
Structural characteristics of pozzolanic reaction products of cemented soil
Fei XU1(),Jinyu GE1,2,Hua WEI1,Jiahui LIANG1,Huaisen LI1,Xuesong HAN1
1. Materials and Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China
2. College of Water Conservancy and Hydropower, Hohai University, Nanjing 210024, China
 全文: PDF(2418 KB)   HTML
摘要:

选取蒙脱土(蒙脱石质量分数为67%)、高岭土(高岭石质量分数为40%)以及石英粉配制人工土,制备初始孔隙率为3%的水泥固化土(水泥土)和掺入NaOH或KOH的改性水泥土. 联用X射线衍射技术及29Si核磁共振技术解析不同水泥土体系下火山灰反应产物的结构特性,揭示水泥土火山灰反应产物的生成机理. 结果表明,Ca2+是组成水泥土中各类反应产物结构的关键离子;掺入NaOH时,火山灰反应向生成水化硅酸盐(M—S—H)、水化铝酸盐(M—A—H)及高铝硅比的水化铝硅酸盐(M—A—S—H)凝胶发展;掺入KOH时,火山灰反应向生成低铝硅比长链状M—A—S—H结构发展(M=Na、K、Ca). 固化高岭土发生火山灰反应易生成M—A—S—H结构,固化蒙脱土易生成层间距较大的蒙脱石以及1∶1型铝硅酸盐结构.

关键词: 水泥土火山灰反应微观结构29Si 核磁共振X射线衍射    
Abstract:

In order to elucidate the formation mechanism of the pozzolanic reaction products in cemented soil, the model soils were prepared with quartz powder, bentonite (mass fraction of montmorillonite is 67%) and kaolin (mass fraction of kaolinite is 40%), and the plain cemented soils and NaOH or KOH activated cemented soils were cast under an initial porosity of 3%. The structural characteristics of the pozzolanic reaction products in different cemented soil systems were explored using the combined techniques of XRD and 29Si NMR. Results show that Ca2+ is the critical ion in constituting the structure of various reaction products in cemented soil; the formation of hydrated silicate (M—S—H), hydrated aluminate (M—A—H), and hydrated aluminosilicate (M—A—S—H) gel with high alumina-silica ratio during the pozzolanic reaction are promoted by the NaOH addition, while the formation of M—A—S—H structures with low alumina-silica ratio and elongated chain are promoted by the KOH addition (M=Na, K, Ca). Regarding the effects of clay types, the M—A—S—H structures are prone to form in the cemented kaolin during the pozzolanic reaction, and the montmorillonite with larger interlayer spacing and the 1∶1 type aluminosilicate structures are produced in the cemented bentonite.

Key words: cemented soil    pozzolanic reaction    microstructure    29Si NMR    XRD
收稿日期: 2023-11-07 出版日期: 2025-01-18
CLC:  TU 41  
基金资助: 国家自然科学基金资助项目(52109161);中国博士后科学基金资助项目(2021M691630).
作者简介: 徐菲(1989—),男,高级工程师,从事水泥?黏土复合材料研究. orcid.org/0000-0002-2992-1255. E-mail:fxu@nhri.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐菲
葛津宇
韦华
梁嘉辉
李怀森
韩雪松

引用本文:

徐菲,葛津宇,韦华,梁嘉辉,李怀森,韩雪松. 水泥固化土火山灰反应产物的结构特性[J]. 浙江大学学报(工学版), 2025, 59(1): 167-176.

Fei XU,Jinyu GE,Hua WEI,Jiahui LIANG,Huaisen LI,Xuesong HAN. Structural characteristics of pozzolanic reaction products of cemented soil. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 167-176.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/167

图 1  水泥的XRD-Rietveld分析结果
图 2  原料土的X射线衍射谱图
图 3  原料土29Si 核磁谱的分峰拟合结果
样品dWL/%WP/%IP
高岭土2.627.716.311.4
蒙脱土2.4121.126.394.8
表 1  试验土样基本物理指标
水泥土命名土壤类型wB/%mS/gmC/g
未改性Mt7.5蒙脱土7.592.57.5
Mt15蒙脱土15.085.015.0
Mt25蒙脱土25.075.025.0
Ka7.5高岭土7.592.57.5
Ka15高岭土15.085.015.0
Ka25高岭土25.075.025.0
碱改性Mt7.5N蒙脱土7.5NaOH92.57.5
Mt7.5K蒙脱土KOH
Ka7.5N高岭土NaOH
Ka7.5K高岭土KOH
Mt25N蒙脱土25.0NaOH75.025.0
Mt25K蒙脱土KOH
Ka25N高岭土NaOH
Ka25K高岭土KOH
表 2  水泥土配合比
图 4  成型后的水泥土样品
聚合形式$-\delta $化学基团代表矿物
Q066~73单硅酸盐中孤立的硅氧四面体C3S、C2S
Q173~82二聚体或高聚体中直链末端的硅氧四面体
Q282~88长链中的硅氧四面体C—S—H、M—A—S—H及M—S—H
Q388~98层中或支链位置上的硅氧四面体${\mathrm{Q}}_{\mathrm{a}}^3 $:高岭石,化学位移约为?91[15]${\mathrm{Q}}_{\mathrm{b}}^3 $:蒙脱石,化学位移约为?93[9]
Q498~129三维网状结构中的硅氧四面体石英[15]
表 3  核磁共振峰谱解译
图 5  水泥质量分数对固化土样品X射线衍射图谱的影响
图 6  不同水泥质量分数下未改性水泥土29Si 核磁谱的分峰拟合结果
样品编号I(Qn)/%I(Q2(II))
/I(Q2(I))
MCL
Q0${\mathrm{Q}}_{\mathrm{a}}^1 $${\mathrm{Q}}_{\mathrm{b}}^1 $Q2(I)Q2(II)${\mathrm{Q}}_{\mathrm{a}}^3 $${\mathrm{Q}}_{\mathrm{b}}^3 $Q4
Mt7.50.00.01.02.08.771.317.04.323.8
Mt150.00.02.13.719.462.812.05.223.6
Mt252.30.012.45.221.949.19.24.26.4
Ka7.51.00.04.14.66.062.022.31.37.2
Ka151.32.410.48.99.645.521.91.14.9
Ka254.26.612.610.513.335.417.51.34.5
表 4  29Si核磁谱分峰拟合后未改性水泥土样品各硅聚合态的表证计算结果
图 7  碱激发固化蒙脱土样品的微观物相表征及结构分析图
样品编号I(Qn)/%I(Q2(II))
/I(Q2(I))
MCL
Q0Q1Q2(I)Q2(II)${\mathrm{Q}}_{\mathrm{a}}^3 $${\mathrm{Q}}_{\mathrm{b}}^3 $${\mathrm{Q}}_{\mathrm{c}}^3 $Q4
Mt7.5N2.73.65.613.025.423.422.51.92.312.5
Mt25N15.036.01.324.816.25.50.01.319.23.5
Mt7.5K2.42.39.210.221.642.110.91.31.118.9
Mt25K7.114.59.938.015.214.70.00.53.88.6
表 5  29Si核磁谱分峰拟合后碱激发固化蒙脱土样品各硅聚合态的表征计算结果
图 8  碱激发固化高岭土样品的微观物相表征及结构分析图
样品编号I(Qn)/%I(Q2(II))
/I(Q2(I))
MCL
Q0${\mathrm{Q}}_{\mathrm{a}}^1 $${\mathrm{Q}}_{\mathrm{b}}^1 $Q2(I)Q2(II)${\mathrm{Q}}_{\mathrm{a}}^3 $Q4
Ka7.5N8.08.510.811.931.314.914.62.66.5
Ka25N14.527.25.111.730.32.58.62.64.6
Ka7.5K6.05.90.019.416.534.317.90.914.1
Ka25K5.912.00.029.925.317.09.80.911.2
表 6  29Si核磁谱分峰拟合后碱激发固化高岭土样品各硅聚合态的表征计算结果
1 任建飞, 周佳锦, 龚晓南, 等 方桩-水泥土接触面摩擦特性试验研究[J]. 浙江大学学报: 工学版, 2023, 57 (7): 1374- 1381
REN Jianfei, ZHOU Jiajin, GONG Xiaonan, et al Experimental study on frictional capacity of square pile-cemented soil interface[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (7): 1374- 1381
2 徐菲, 蔡跃波, 钱文勋, 等 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41 (9): 1679- 1687
XU Fei, CAI Yuebo, QIAN Wenxun, et al Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (9): 1679- 1687
doi: 10.11779/CJGE201909012
3 吴萌, 姬永生, 陈晓峰, 等 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报: 工学版, 2016, 50 (8): 1479- 1485
WU Meng, JI Yongsheng, CHEN Xiaofeng, et al Effect of superfine fly ash on thaumasite form of sulfate attack[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (8): 1479- 1485
4 李斯臣, 杨俊杰, 武亚磊, 等 水泥固化软土抗拉特性研究[J]. 中南大学学报: 自然科学版, 2022, 53 (7): 2619- 2632
LI Sichen, YANG Junjie, WU Yalei, et al Research on tensile characteristics of cement-treated soft soil[J]. Journal of Central South University: Science and Technology, 2022, 53 (7): 2619- 2632
5 SUKMAK G, SUKMAK P, HORPIBULSUK S, et al Generalized strength prediction equation for cement stabilized clayey soils[J]. Applied Clay Science, 2023, 231: 106761
doi: 10.1016/j.clay.2022.106761
6 王志良, 王竟宇, 申林方, 等 红黏土置换作用对水泥固化泥炭土强度的影响[J]. 建筑材料学报, 2019, 22 (1): 87- 93
WANG Zhiliang, WANG Jingyu, SHEN Linfang, et al Effect of red clay replacement on strength of cement stabilized peaty soil[J]. Journal and Building Materials, 2019, 22 (1): 87- 93
doi: 10.3969/j.issn.1007-9629.2019.01.013
7 项国圣, 方圆, 徐永福 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报: 工学版, 2017, 51 (5): 931- 936
XIANG Guosheng, FANG Yuan, XU Yongfu Swelling characteristics of GMZ01 bentonite affected by cation exchange reaction[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 931- 936
8 KHALIFA A Z, CIZER Ö, PONTIKES Y, et al Advances in alkali-activation of clay minerals[J]. Cement and Concrete Research, 2020, 132: 106050
doi: 10.1016/j.cemconres.2020.106050
9 MARSH A, HEATH A, PATUREAU P, et al Phase formation behaviour in alkali activation of clay mixtures[J]. Applied Clay Science, 2019, 175: 10- 21
doi: 10.1016/j.clay.2019.03.037
10 WU J, DENG Z, DENG Y, et al Interaction between cement clinker constituents and clay minerals and their influence on the strength of cement-based stabilized soft clay[J]. Canadian Geotechnical Journal, 2022, 59 (6): 889- 900
doi: 10.1139/cgj-2021-0194
11 ABDULLAH H H, SHAHIN M A, WALSKE M L, et al Systematic approach to assessing the applicability of fly-ash-based geopolymer for clay stabilization[J]. Canadian Geotechnical Journal, 2020, 57 (9): 1356- 1368
doi: 10.1139/cgj-2019-0215
12 FENG B, LIU H, LI Y, et al AFM measurements of Hofmeister effects on clay mineral particle interaction forces[J]. Applied Clay Science, 2020, 186: 105443
doi: 10.1016/j.clay.2020.105443
13 PAPA E, MEDRI V, AMARI S, et al Zeolite-geopolymer composite materials: production and characterization[J]. Journal of Cleaner Production, 2018, 171 (10): 76- 84
14 SAVAGE D, WALKER C, ARTHUR R, et al Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals[J]. Physics and Chemistry of the Earth, 2007, 32 (1/2/3/4/5/6/7): 287- 297
doi: 10.1016/j.pce.2005.08.048
15 倪航天, 黄煜镔 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35 (9): 09168- 09173
NI Hangtian, HUANG Yubin Review on microstructure evaluation methods of solidified soil[J]. Materials Reports, 2021, 35 (9): 09168- 09173
16 TONELLI M, MARTINI F, CALUCCI L, et al Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements[J]. Dalton Transactions, 2016, 45 (8): 3294- 3304
doi: 10.1039/C5DT03545G
17 BROUGH A R, DOBSON C M, RICHARDSON I G, et al Application of selective 29Si isotopic enrichment to studies of the structure of calcium silicate hydrate (C-S-H) gels[J]. Journal of the American Ceramic Society, 1994, 77 (2): 593- 596
doi: 10.1111/j.1151-2916.1994.tb07034.x
18 MARTINI F, TONELLI M, GEPPI M, et al Hydration of MgO/SiO2 and Portland cement mixtures: a structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy[J]. Cement and Concrete Research, 2017, 102: 60- 67
doi: 10.1016/j.cemconres.2017.08.029
19 SKIBSTED J, ANDERSEN M D The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C—S—H) phase resulting from Portland cement hydration studied by 29Si MAS NMR[J]. Journal of the American Ceramic Society, 2013, 96 (2): 651- 656
doi: 10.1111/jace.12024
20 GARCÍA-LODEIRO I, CHERFA N, ZIBOUCHE F, et al The role of aluminium in alkali-activated bentonites[J]. Materials and Structures, 2015, 48 (3): 585- 597
doi: 10.1617/s11527-014-0447-8
21 HAN Z, YANG H, BU M, et al A molecular dynamics study on the structural and mechanical properties of pyrophyllite and m-montmorillonites (m=Na, K, Ca, and Ba)[J]. Chemical Physics Letters, 2022, 803: 139848
doi: 10.1016/j.cplett.2022.139848
22 WANG J, GAO C, TANG J, et al The multi-scale mechanical properties of calcium-silicate-hydrate[J]. Cement and Concrete Composites, 2023, 140: 105097
doi: 10.1016/j.cemconcomp.2023.105097
23 陈宝, 张会新, 陈萍 高碱溶液对高庙子膨润土侵蚀作用的研究[J]. 岩土工程学报, 2013, 35 (1): 181- 186
CHEN Bao, ZHANG Huixin, CHEN Ping Erosion effect of hyper-alkaline solution on Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (1): 181- 186
24 REYES C A R, WILLIAMS C, ALARCÓN O M C Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions[J]. Materials Research, 2013, 16 (2): 424- 438
doi: 10.1590/S1516-14392013005000010
25 PHAIR J W, VAN DEVENTER J S J, SMITH J D Mechanism of polysialation in the incorporation of zirconia into fly ash-based geopolymers[J]. Industrial and Engineering Chemistry Research, 2000, 39 (8): 2925- 2934
doi: 10.1021/ie990929w
26 徐菲, 韦华, 钱文勋, 等 水泥土组成矿物的热重-热力学模拟联用分析[J]. 建筑材料学报, 2022, 25 (4): 424- 433
XU Fei, WEI Hua, QIAN Wenxun, et al Compositional minerals of cemented soil by combined thermogravimetry and thermodynamic modelling[J]. Journal and Building Materials, 2022, 25 (4): 424- 433
doi: 10.3969/j.issn.1007-9629.2022.04.014
[1] 成辉,付宏渊,曾铃,于晓伟,罗锦涛,刘杰. 考虑干湿循环路径的粉砂质泥岩力学特性及本构模型[J]. 浙江大学学报(工学版), 2024, 58(9): 1912-1922.
[2] 庄心善,杨本驰,陶高梁. 纳米Al2O3改良滨海水泥土的动力特性及微观机理试验研究[J]. 浙江大学学报(工学版), 2024, 58(7): 1457-1466.
[3] 苗泽锴,张大任,马刚,邹宇雄,陈远,周伟,肖宇轩. 基于X-ray CT原位三轴剪切试验的砂土颗粒材料微观动力学[J]. 浙江大学学报(工学版), 2023, 57(8): 1597-1606.
[4] 任建飞,周佳锦,龚晓南,俞建霖. 方桩-水泥土接触面摩擦特性试验研究[J]. 浙江大学学报(工学版), 2023, 57(7): 1374-1381.
[5] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[6] 肖偲,王奎华,王孟波. 基于桩侧虚土桩模型的桩-桩芯土竖向动力响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1593-1603.
[7] 闫东明,黄之昊,陈功,钱昊,邓嘉华,刘毅. 低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 56-63.
[8] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[9] 余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
[10] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[11] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[12] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[13] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[14] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[15] 周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 2015, 49(3): 531-537.