Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1336-1341    DOI: 10.3785/j.issn.1008-973X.2022.07.009
土木工程、水利工程、交通工程     
基于水泥净浆流变性的振动-剪切等效理论
李晓田(),谢广年,高竹锐,张声军,李军师
同济大学 机械与能源工程学院,上海 201804
Vibration-shear equivalent theory based on rheological property of cement slurry
Xiao-tian LI(),Guang-nian XIE,Zhu-rui GAO,Sheng-jun ZHANG,Jun-shi LI
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
 全文: PDF(907 KB)   HTML
摘要:

为了分析振动条件下水泥净浆的流变特性,解释水泥净浆流变性模型的转化机制,提出适用于振动条件下水泥净浆流变性分析的振动-剪切等效理论. 根据修正HI理论和回转黏度仪径向分层算法,计算振动条件下回转黏度仪内水泥净浆流场的剪切速率,将振动台正弦振动过程转化为对水泥净浆的剪切过程. 采用自制回转黏度仪,开展20 Hz振动频率下的HI参数标定试验和30 Hz振动频率下的水泥净浆黏度试验. 结果表明,HI参数标定结果与数值计算结果之间的误差约为7%,水泥净浆的试验黏度与数值计算的黏度之间的误差为8%并趋于收敛状态. 增大振动频率,水泥净浆的黏度逐渐减小并达到峰值,流变性模型逐渐由Bingham模型转变为Hershel-Bulkley模型,最后转变为Power-Law模型.

关键词: 水泥净浆振动-剪切等效理论流变特性振动HI理论    
Abstract:

The transformation mechanism of the rheological model of cement slurry was explained in order to analyze the rheological properties of cement slurry under excitation. The vibration-shear equivalent theory was proposed for the rheological analysis of cement slurry under excitation. The shear rate of the flow field of cement paste in the rotary viscometer under the excitation condition was calculated according to the modified HI theory and the radial stratification algorithm of rotary viscometer. The sinusoidal vibration process of the shaking table was transformed into the shear process of cement paste. The HI parameter calibration test under the vibration frequency of 20 Hz and the viscosity test of cement paste under the vibration frequency of 30 Hz were conducted by using the self-made rotary viscometer. Results showed that the error between HI parameter calibration results and numerical calculation results was about 7%, and the error between test viscosity and numerical calculation viscosity of cement paste was 8%, which tended to converge. The viscosity of cement paste gradually decreased and reached a peak by increasing the vibration frequency. The rheological model gradually changed from Bingham model to Hershel-Bulkley model, which was transformed into Power-Law model.

Key words: cement slurry    vibration-shear equivalent theory    rheological property    vibration    HI theory
收稿日期: 2021-07-11 出版日期: 2022-07-26
CLC:  TU 528  
基金资助: 国家“十三五”重点研发计划资助项目(2017YFC0704004);山东省重点研发计划资助项目(2020CXGC011005)
作者简介: 李晓田(1983—),男,助理教授,从事混凝土振动密实机理的研究. orcid.org/0000-0002-5357-3860.E-mail: lixiaotian@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李晓田
谢广年
高竹锐
张声军
李军师

引用本文:

李晓田,谢广年,高竹锐,张声军,李军师. 基于水泥净浆流变性的振动-剪切等效理论[J]. 浙江大学学报(工学版), 2022, 56(7): 1336-1341.

Xiao-tian LI,Guang-nian XIE,Zhu-rui GAO,Sheng-jun ZHANG,Jun-shi LI. Vibration-shear equivalent theory based on rheological property of cement slurry. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1336-1341.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.009        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1336

图 1  回转黏度仪流场区域径向分层的示意图
图 2  振动下回转黏度仪A-A截面流场速度分布的示意图
图 3  回转黏度仪的结构示意图
图 4  振动状态下水泥净浆黏度测量装置的示意图
参数 参数值 参数 参数值
${m_{\rm{a} } }/{\rm{s}}$ 30 ${\tau _0}/{\rm{Pa}}$ 1
${m_{\rm{b} } }/{\rm{s}}$ 0 $\mu/({\rm{Pa} }\cdot{\rm{s} })$ 6
$ {a_1}$ 530 ${\dot \gamma _{ {\rm{vib} } } }/{\rm{s} }^{-1}$ 10
$ {a_2} $ 300 ${R_1}/{\rm{m}}$ 0.1
$ {U_0} $ 0.9 ${R_2} /{\rm{m}}$ 0.16
表 1  20 Hz振动频率下的HI参数标定结果
图 5  不同振动频率下水泥净浆试验黏度与数值计算黏度的对比
图 6  由振动台振动引起的不同剪切速率条件下水泥净浆黏度变化的示意图
${\dot \gamma _{{\rm{vib}}} }$ 拟合表达式
0 $T = 1.842 + 0.022 \; 72\varOmega$
3 $T = 0.718 \; 4 + 0.151 \; 9{\varOmega ^{0.678 \; 2} }$
5 $T = 0.313 \; 1 + 0.209 \; 4{\varOmega ^{0.629 \; 4} }$
7 $T = 0.251{\varOmega ^{0.603 \; 6} }$
10 $T = 0.204 \; 8{\varOmega ^{0.640 \; 6} }$
表 2  由振动台振动引起的不同剪切速率条件下回转黏度仪转矩与转速的拟合表达式
图 7  由振动台振动引起的不同剪切速率条件下回转黏度仪转矩随转速变化的示意图
1 SHEN H, DUAN Z S, LI F. The significance of vibration in concrete mixing [C]// Applied Mechanics and Materials. Switzerland: Trans Tech Publication, 2012, 220: 509-512.
2 SAFAWI M I, IWAKI I, MIURA T Study on the applicability of vibration in fresh high fluidity concrete[J]. Cement and Concrete Research, 2005, 35 (9): 1834- 1845
doi: 10.1016/j.cemconres.2004.10.031
3 BARNES H A, HUTTON J F, WALTERSW K. An introduction to rheology [M]. Amsterdam: Elsevier, 1989.
4 BARNES H A Thixotropy: a review[J]. Non-Newtonian Fluid Mechanics, 1997, 70 (1/2): 1- 33
doi: 10.1016/S0377-0257(97)00004-9
5 HATTORI K. A new viscosity equation for non-Newtonian suspensions and its application[C]// Proceeding of the RILEM Colloquium on Properites of Fresh Concrete. London: [s. n. ], 1990: 83-92.
6 HATTORI K, IZUMI K. Rheology of fresh cement and concrete [C]// Proceeding of the International Conference Organized by the British Society of Rheology. London: University of Liverpool, 1991: 82-92.
7 TATTERSALL G H, BANFILL P F G. The rheology of fresh concrete [M]. London: Pitman Advanced Publishing Program, 1983.
8 WALLEVIK J E. Particle flow interaction theory: thixotropic behavior and structural breakdown [C]// Proceedings of the Conference on Our World of Concrete and Structures. Singapore: [s. n. ], 2011: 14-16.
9 WALLEVIK J E Rheological properties of cement paste: thixotropic behavior and structural breakdown[J]. Cement and Concrete Research, 2009, 39 (1): 14- 29
doi: 10.1016/j.cemconres.2008.10.001
10 WALLEVIK J E. Rheology of particle suspensions: Fresh concrete, mortar and cement paste with various types of lignosulfonates [D]. Trondheim: Norwegian University of Science and Technology, 2003.
11 BRATU P, PINTOI R. Evaluation of the rheological parameters modification of concrete vibrating compaction by dynamic methods [C]// MATEC Web of Conferences. France: EDP Sciences, 2014: 01016.
12 JURADIN S, KRSTULOVIC P The vibration rheometer: the effect of vibration on fresh concrete and similar materials[J]. Materialwissenschaft und Werkstofftechnik, 2012, 43 (8): 733- 742
doi: 10.1002/mawe.201200769
13 JURADIN S Determination of rheological properties of fresh concrete and similar materials in a vibration rheometer[J]. Materials Research, 2012, 15 (1): 103- 113
14 DATE S, GORYOZONO Y, HASHIMOTO S Study on consolidation of concrete with vibration[J]. Physics Procedia, 2012, 25 (4): 325- 332
15 DE LARRARD F, FERRARIS C F, SEDRAN T Fresh concrete: a Herschel-Bulkley material[J]. Materials and Structures, 1998, 31 (7): 494- 498
doi: 10.1007/BF02480474
16 PICHLER C, RÖCK R, LACKNER R Apparent power-law fluid behavior of vibrated fresh concrete: engineering arguments based on Stokes-type sphere viscometer measurements[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 240: 44- 55
doi: 10.1016/j.jnnfm.2016.12.007
17 李晓田, 王楚昕, 于永强 基于颗粒流交互理论的水泥净浆流变分布算法[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2264- 2270
LI Xiao-tian, WANG Chu-xin, YU Yong-qiang Rheological distribution algorithm of cement paste based on particle-flow-interaction theory[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2264- 2270
18 VASILIC K, SCHMIDT W, KÜHNE H C, et al Flow of fresh concrete through reinforced elements: experimental validation of the porous analogy numerical method[J]. Cement and Concrete Research, 2016, 88 (1): 1- 6
19 BAKER P H, TATTERSALL G H The effect of vibration on the rheological properties of fresh concrete[J]. Magazine of Concrete Research, 1988, 40 (143): 79- 89
doi: 10.1680/macr.1988.40.143.79
20 WALLEVIK O H, WALLEVIK J E Rheology as a tool in concrete science: the use of rheographs and workability boxes[J]. Cement and Concrete Research, 2011, 41 (12): 1279- 1288
doi: 10.1016/j.cemconres.2011.01.009
21 BANFILL P F G, YONGMO X, DOMONE P L J Relationship between the rheology of unvibrated fresh concrete and its flow under vibration in a vertical pipe apparatus[J]. Magazine of Concrete Research, 1999, 51 (3): 181- 190
doi: 10.1680/macr.1999.51.3.181
22 边策, 李金明, 田正宏, 等 受振混凝土流变性试验研究[J]. 水利规划与设计, 2020, 27 (10): 94- 100
BIAN Ce, LI Jin-ming, TIAN Zheng-hong, et al Experimental study on rheological properties of vibrating concrete[J]. Water Resources Planning and Design, 2020, 27 (10): 94- 100
[1] 刘文涛,赵坤,汪久根,宋丽. 汽车制动系统用滚珠丝杠副振动检测方法[J]. 浙江大学学报(工学版), 2021, 55(8): 1529-1537.
[2] 刘春晓,陶连金,边金,张宇,冯锦华,代希彤,王兆卿. 可液化土层对地下结构地震影响的振动台试验[J]. 浙江大学学报(工学版), 2021, 55(7): 1327-1338.
[3] 纪爱敏,王豪,邓铭,张磊. 高空作业平台臂架伸缩运动的横向振动特性[J]. 浙江大学学报(工学版), 2021, 55(7): 1245-1252.
[4] 姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.
[5] 赵爽,吴君涛,邱欣晨,王奎华,涂园. 基于水平低应变法的高承台桩缺陷检测研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1867-1876.
[6] 胡广豪,薛进学,马文举,隆志力. 芯片键合纵弯复合超声换能器的设计与试验[J]. 浙江大学学报(工学版), 2020, 54(7): 1335-1340.
[7] 赖杰,刘云,辛建平,王炜,高成强,朱海波. 大理西站支护边坡振动台试验及数值模拟[J]. 浙江大学学报(工学版), 2020, 54(5): 870-878.
[8] 赵佳雷,周叮,张建东,胡朝斌. 基于Chebyshev-Ritz法分析多裂纹梁自振特性[J]. 浙江大学学报(工学版), 2020, 54(4): 778-786.
[9] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[10] 谭芳芳,朱俊江,严天宏,高志强,何岭松. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报(工学版), 2020, 54(1): 40-47.
[11] 刘佩,朱海鑫,杨维国,皇甫楠琦. 机械振动引起的高层建筑共振与减振响应实测[J]. 浙江大学学报(工学版), 2020, 54(1): 102-109.
[12] 陈瑶,蔡袁强,曹志刚,王海江. 不平顺路面对交通荷载引起的地基振动影响[J]. 浙江大学学报(工学版), 2019, 53(6): 1031-1039.
[13] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[14] 胡霖远,陈伟球,张治成,徐荣桥. 基于Zig-zag理论的波形钢腹板梁自由振动分析[J]. 浙江大学学报(工学版), 2019, 53(3): 503-511.
[15] 李晓田,王楚昕,于永强. 基于颗粒流交互理论的水泥净浆流变分布算法[J]. 浙江大学学报(工学版), 2019, 53(12): 2264-2270.